Skip to main content
Log in

Cavitation bubble oscillation period as a process diagnostic during the laser shock peening process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser shock peening (LSP) technology is a laser-induced shock process implemented as a surface enhancement technique to introduce beneficial compressive residual stresses into metallic components. The process employs water to confine and enhance the pressure pulse delivered to the target. For thick water layers, or fully water immersed LSP, a cavitation bubble is generated by the surface vaporization of the LSP laser pulse. This research shows that the first bubble oscillation period of the cavitation bubble can be used to characterize effective and repeatable energy delivery to the target. High-speed shadowgraphy is implemented to show that variations in the bubble period occur before visual observations of dielectric breakdown in water. The diagnostic potential of the first bubble oscillation period is used to identify the dielectric breakdown threshold of water, which shows an increase with increasing water quality measured by water conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Ding, L. Ye, Laser Shock Peening: Performance and Process Simulation (Woodhead Publishing, Cambridge, 2006)

    Book  Google Scholar 

  2. A.H. Clauer, Surface Performance of Titanium, pp. 217–230 (1996)

  3. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, Y. Ochi, Mater. Sci. Eng. A 417(1), 334 (2006)

    Article  Google Scholar 

  4. R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, J. Laser Appl. 10(6), 265 (1998)

    Article  ADS  Google Scholar 

  5. P. Peyre, R. Fabbro, L. Berthe, C. Dubouchet, J. Laser Appl. 8(3), 135 (1996)

    Article  ADS  Google Scholar 

  6. T. Thorslund, F.J. Kahlen, A. Kar, Opt. Lasers Eng. 39(1), 51 (2003)

    Article  Google Scholar 

  7. P. Peyre, R. Fabbro, Opt. Quantum Electron. 27(12), 1213 (1995)

    Google Scholar 

  8. C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai, Int. J. Fatigue 24(10), 1021 (2002)

    Article  Google Scholar 

  9. A.K. Gujba, M. Medraj, Materials 7(12), 7925 (2014)

    Article  ADS  Google Scholar 

  10. G. Hammersley, L.A. Hackel, F. Harris, Opt. Lasers Eng. 34(4), 327 (2000)

    Article  Google Scholar 

  11. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys. 82(6), 2826 (1997)

    Article  ADS  Google Scholar 

  12. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys. 85(11), 7552 (1999)

    Article  ADS  Google Scholar 

  13. A. Sollier, L. Berthe, R. Fabbro, Eur. Phys. J. Appl. Phys. 16(2), 131 (2001)

    Article  ADS  Google Scholar 

  14. B. Wu, Y.C. Shin, Appl. Phys. Lett. 88(4), 041116 (2006)

    Article  ADS  Google Scholar 

  15. J. Ocaña, C. Molpeceres, J. Porro, G. Gómez, M. Morales, Appl. Surf. Sci. 238(1), 501 (2004)

    Article  ADS  Google Scholar 

  16. J. Ocaña, M. Morales, C. Molpeceres, J. Porro, in Int. Symp. on High Power Laser Ablation, vol. 1278, 2010, pp. 902–913

  17. C. Rubio-González, G. Gomez-Rosas, J. Ocaña, C. Molpeceres, A. Banderas, J. Porro, M. Morales, Appl. Surf. Sci. 252(18), 6201 (2006)

    Article  ADS  Google Scholar 

  18. G. Gomez-Rosas, C. Rubio-González, J. Ocana, C. Molpeceres, J. Porro, W. Chi-Moreno, M. Morales, Appl. Surf. Sci. 252(4), 883 (2005)

    Article  ADS  Google Scholar 

  19. E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier, C. Genzel, Mater. Sci. Eng. A 536, 82 (2012)

    Article  Google Scholar 

  20. A. Salimianrizi, E. Foroozmehr, M. Badrossamay, H. Farrokhpour, Opt. Lasers Eng. 77, 112 (2016)

    Article  Google Scholar 

  21. P.K. Kennedy, D.X. Hammer, B.A. Rockwell, Prog. Quantum Electron. 21(3), 155 (1997)

    Article  ADS  Google Scholar 

  22. D.X. Hammer, E.D. Jansen, M. Frenz, G.D. Noojin, R.J. Thomas, J. Noack, A. Vogel, B.A. Rockwell, A.J. Welch, Appl. Opt. 36(22), 5630 (1997)

    Article  ADS  Google Scholar 

  23. R. Haydar, Laser induced plasmas in liquid water: from single pulse breakdown to repetitive breakdown. PhD thesis, Citeseer (2014)

  24. H. Schmidt-Kloiber, G. Paltauf, E. Reichel, J. Appl. Phys. 66(9), 4149 (1989)

    Article  ADS  Google Scholar 

  25. A. Vogel, B.A. Rockwell, Roles of tunneling, multiphoton ionization, and cascade ionization for femtosecond optical breakdown in aqueous media. Tech. rep, DTIC Document, 2009

  26. A. Vogel, E.A. Brujan, P. Schmidt, K. Nahen, in BiOS 2001 The International Symposium on Biomedical Optics, International Society for Optics and Photonics, 2001, pp. 167–177

  27. D.X. Hammer, R.J. Thomas, G.D. Noojin, B.A. Rockwell, P.K. Kennedy, W.P. Roach, IEEE J. Quantum Electron. 32(4), 670 (1996)

    Article  ADS  Google Scholar 

  28. P.K. Kennedy, S.A. Boppart, D.X. Hammer, B.A. Rockwell, G.D. Noojin, W. Roach, IEEE J. Quantum Electron. 31(12), 2250 (1995)

    Article  ADS  Google Scholar 

  29. A. Vogel, K. Nahen, D. Theisen, J. Noack, IEEE J. Quantum Electron. 2(4), 847 (1996)

    Article  Google Scholar 

  30. P. Peyre, N. Hfaiedh, H. Song, Int. J. Struct. Integr. 2(1), 87 (2011)

    Article  Google Scholar 

  31. A. Sasoh, K. Watanabe, Y. Sano, N. Mukai, Appl. Phys. A 80(7), 1497 (2005)

    Article  ADS  Google Scholar 

  32. L. Martí-López, R. Ocaña, J. Porro, M. Morales, J. Ocaña, Appl. Opt. 48(19), 3671 (2009)

    Article  ADS  Google Scholar 

  33. L. Martí-López, R. Ocaña, E. Piñeiro, A. Asensio, Phys. Proc. 12, 442 (2011)

    Article  ADS  Google Scholar 

  34. T.T.P. Nguyen, Dynamics of under-liquid laser-induced shock process studied by time-resolved photoelasticity imaging technique. PhD thesis, Nagaoka University of Technology (2015)

  35. T.T.P. Nguyen, R. Tanabe, Y. Ito, in 4th Int. Conf. on Laser Shock Peening and Related Phenom., 2013

  36. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. A 116(3), 1109 (2014)

    Article  ADS  Google Scholar 

  37. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. A 122(9), 830 (2016)

    Article  ADS  Google Scholar 

  38. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. Lett. 102(12), 124103 (2013)

    Article  ADS  Google Scholar 

  39. M. Enoki, K. Kobayashi, T. Takata, A. Matsui, Y. Kobayashi, in 30th European Conference on Acoustic Emission Testing and 7th International Conference on Acoustic Emission, 2012

  40. C. Polese, D. Glaser, R. Bedekar, in 30th Int. Congr. on High-Speed Imaging and Photonics, 2012

  41. Y. Sano, Y. Sakino, N. Mukai, M. Obata, I. Chida, T. Uehara, M. Yoda, Y.C. Kim, in Mater. Sci. Forum, Trans Tech Publ, vol. 580, 2008, pp. 519–522

  42. F.R. Young, Cavitation (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  43. F. Caupin, E. Herbert, C. R. Phys. 7(9), 1000 (2006)

    Article  ADS  Google Scholar 

  44. L. Rayleigh, Philos. Mag. 34(200), 94 (1917)

    Article  Google Scholar 

  45. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. Hammer, G. Noojin, B. Rockwell, R. Birngruber, Appl. Phys. B 68(2), 271 (1999)

    Article  ADS  Google Scholar 

  46. R.P. Godwin, E.J. Chapyak, J. Noack, A. Vogel, in BiOS’99 International Biomedical Optics Symposium, International Society for Optics and Photonics, 1999, pp. 225–236

  47. A. Vogel, W. Lauterborn, J. Acoust. Soc. Am. 84(2), 719 (1988)

    Article  ADS  Google Scholar 

  48. P. Gregorčič, R. Petkovšek, J. Možina, J. Appl. Phys. 102(9), 094904 (2007)

    Article  ADS  Google Scholar 

  49. ISO 11145:2016 3.5.2 Beam Widths (2016)

  50. P. Gregorčič, R. Petkovšek, J. Možina, G. Močnik, Appl. Phys. A 93(4), 901 (2008)

    ADS  Google Scholar 

  51. A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, Lasers Surg. Med. 15(1), 32 (1994)

    Article  Google Scholar 

  52. ISO 3696:1987 Water for Analytical Laboratory Use (1987)

  53. ASTM D1193-99 Standard Specification for Reagent Water (1999)

  54. P.K. Kennedy, IEEE J. Quantum Electron. 31(12), 2241 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Rental Pool Program at the National Laser Centre within the Council for Scientific and Industrial Research, the DST-NRF Centre of Excellence in Strong Materials (CoE-SM), the National Aerospace Centre (NAC), and the Flow Research Unit (FRU) at the University of the Witwatersrand. The authors are also grateful to Microsep (Pty) Ltd and the School of Chemistry at the University of the Witwatersrand for support regarding purified water and water conductivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Glaser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glaser, D., Polese, C. Cavitation bubble oscillation period as a process diagnostic during the laser shock peening process. Appl. Phys. A 123, 603 (2017). https://doi.org/10.1007/s00339-017-1209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1209-6

Navigation