Skip to main content
Log in

A review on laser drilling optimization technique: parameters, methods, and physical-field assistance

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser processing has emerged as a pivotal technique for micro-hole fabrication owing to its exceptional efficiency and absence of tool wear. Nevertheless, certain imperfections persist in laser drilling. Consequently, this study presents a comprehensive analysis of the impact of laser processing parameters, methods, and physical field-assisted techniques on the quality and efficiency of laser drilling based on the characteristics desired for micro-holes. The findings reveal that selecting an appropriate laser wavelength and pulse width, coupled with meticulous adjustments to laser power, repetition frequency, and defocusing amount can enhance either processing efficiency or micro-holes quality; however, optimizing both aspects simultaneously remains challenging. By refining scanning strategies and implementing pulsed joint secondary repair approaches, heat accumulation is minimized while micro-holes quality is optimized; nevertheless, ensuring high processing efficiency poses difficulties. Ultrasonic assisted laser drilling enhances processing efficiency by facilitating the expulsion of molten materials, while magnetic field-assisted laser drilling improves processing efficiency by mitigating the attenuation of the laser caused by plasma clouds. Both techniques contribute to enhancing the quality of hole walls through their stirring effect. Water-based ultrasonic/magnetic field-assisted laser perforation combines heat dissipation and secondary flushing effects with ultrasonic/magnetic field assistance, resulting in superior micro-hole formation. Magnetic field-ultrasonic assisted laser perforation synergistically combines both effects. Furthermore, this study distinguishes between the promoting and inhibiting effects of rotating and static magnetic fields on molten metal flow, elucidating the impact of ultrasound and magnetic fields on molten metal from a melt dynamics perspective. Finally, we summarize the influence of each optimization method on micro-hole quality characteristics and processing efficiency while providing insights into future development trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhao W, Yu Z (2018) Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser. Opt Lasers Eng 105:125–131. https://doi.org/10.1016/j.optlaseng.2018.01.011

    Article  Google Scholar 

  2. Liu C, Zhang X, Gao L, Jiang X, Li C, Yang T (2021) Feasibility of micro-hole machining in fiber laser trepan drilling of 2.5D Cf/SiC composite: Experimental investigation and optimization. Optik 242:167186. https://doi.org/10.1016/j.ijleo.2021.167186

    Article  Google Scholar 

  3. Zhu X-X, Wang W-H, Jiang R-S, Zhang Z-F, Huang B, Ma X-W (2020) Research on ultrasonic-assisted drilling in micro-hole machining of the DD6 superalloy. Adv Manuf 8:405–417. https://doi.org/10.1007/s40436-020-00301-6

    Article  Google Scholar 

  4. Liu F, Li L, Zhang B, Fan W, Zhang R, Liu G, Liu X (2019) A novel electrochemical sensor based on microporous polymeric nanospheres for measuring peroxynitrite anion released by living cells and studying the synergistic effect of antioxidants. Analyst 144:6905–6913. https://doi.org/10.1039/C9AN01693G

    Article  Google Scholar 

  5. Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar N-M, Jeyanthi J (2020) Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 156:430–437. https://doi.org/10.1016/j.ijbiomac.2020.04.059

    Article  Google Scholar 

  6. Zeng X, Hu X, Song H, Xia G, Shen Z-Y, Yu R, Moskovits M (2021) Microwave synthesis of zeolites and their related applications. Microporous Mesoporous Mater 323:111262. https://doi.org/10.1016/j.micromeso.2021.111262

    Article  Google Scholar 

  7. Firsa T, Tadjuddin M, Udink A, Hasanuddin I (2020) Effect of Machining Parameters on Hole Accuracy and Burr Formation in Micro-Drilling of Brass. Defect Diffus Forum 402:73–80. https://doi.org/10.4028/www.scientific.net/DDF.402.73

    Article  Google Scholar 

  8. Zhang Y, Qiao H, Zhao J, Cao Z (2022) Research on water jet-guided laser micro-hole machining of 6061 aluminum alloy. Int J Adv Manuf Technol 118:1–13. https://doi.org/10.1007/s00170-021-07104-4

    Article  Google Scholar 

  9. Cung K, Bitsis D-C, Briggs T, Kalaskar V, Abidin Z, Shah B, Miwa J (2018) Effect of micro-hole nozzle on diesel spray and combustion. Wcx World Congress Experience. https://doi.org/10.4271/2018-01-0301

  10. Huan L, Jicheng B, Yan C, Guozheng Z, Shaojie H (2020) Micro-electrode wear and compensation to ensure the dimensional consistency accuracy of micro-hole array in micro-EDM drilling. Int J Adv Manuf Technol 111:2653–2665. https://doi.org/10.1007/s00170-020-05811-y

    Article  Google Scholar 

  11. Liu Y-Z (2020) Coaxial waterjet-assisted laser drilling of film cooling holes in turbine blades. Int J Mach Tools Manuf 150:103510. https://doi.org/10.1016/j.ijmachtools.2019.103510

    Article  Google Scholar 

  12. Li Z, Bai J, Cao Y, Wang Y, Zhu G (2019) Fabrication of microelectrode with large aspect ratio and precision machining of micro-hole array by micro-EDM. J Mater Process Technol 268:70–79. https://doi.org/10.1016/j.jmatprotec.2019.01.009

    Article  Google Scholar 

  13. Ji L, Zhang L, Cao L, Zheng J, Wang J, Han W, Zhang H (2022) Laser rapid drilling of bone tissue in minimizing thermal injury and debris towards orthopedic surgery. Mater Des 220:110895. https://doi.org/10.1016/j.matdes.2022.110895

    Article  Google Scholar 

  14. Wang Y, Zou B, Yin G (2019) Wear mechanisms of Ti(C7N3)-based cermet micro-drill and machining quality during ultra-high speed micro-drilling multi-layered PCB consisting of copper foil and glass fiber reinforced plastics. Ceram Int 45:24578–24593. https://doi.org/10.1016/j.ceramint.2019.08.187

    Article  Google Scholar 

  15. Jia H, Jian Y, Yin B, Yang J, Liu Z (2023) Experimental study on the combustion, emissions and fuel consumption of elliptical nozzle diesel engine. Energy 262:125449. https://doi.org/10.1016/j.energy.2022.125449

    Article  Google Scholar 

  16. Kliuev M, Boccadoro M, Perez R, Dal Bó W, Stirnimann J, Kuster F, Wegener K (2016) EDM drilling and shaping of cooling holes in Inconel 718 turbine blades. Procedia CIRP 42:322–327. https://doi.org/10.1016/j.procir.2016.02.293

    Article  Google Scholar 

  17. Natsu W, Hanamura Y (2022) Influence of electrolyte flow on transfer characteristics of electrochemical machining for micro-hole. Procedia CIRP 113:453–458. https://doi.org/10.1016/j.procir.2022.09.199

    Article  Google Scholar 

  18. Goyal R, Dubey A-K (2014) Quality improvement by parameter optimization in laser trepan drilling of superalloy sheet. Mater Manuf Process 29:1410–1416. https://doi.org/10.1080/10426914.2014.912313

    Article  Google Scholar 

  19. Liu H, Zhao W, Wang L, Shen X, Wang N, Wang X (2020) Percussion drilling of deep holes using picosecond ultrashort pulse laser in ni-based superalloy coated with ceramic thermal barrier coatings. Materials 13:3570. https://doi.org/10.3390/ma13163570

    Article  Google Scholar 

  20. Liu H, Bai J (2020) The Tool electrode wear and gap fluid field simulation analysis in micro-EDM Drilling of micro-hole array. Procedia CIRP 95:220–225. https://doi.org/10.1016/j.procir.2020.02.278

    Article  Google Scholar 

  21. Li G, Natsu W, Yu Z (2021) Elucidation of the mechanism of the deteriorating interelectrode environment in micro EDM drilling. Int J Mach Tools Manuf 167:103747. https://doi.org/10.1016/j.ijmachtools.2021.103747

    Article  Google Scholar 

  22. Li G, Natsu W, Yang J, Yu Z (2022) Bubble flushing effect in micro EDM drilling and its relation with debris. J Mater Process Technol 305:117590. https://doi.org/10.1016/j.jmatprotec.2022.117590

    Article  Google Scholar 

  23. Wen Z, Liang J, Liu C, Pei H, Wen S, Yue Z (2018) Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. Int J Mech Sci 141:276–289. https://doi.org/10.1016/j.ijmecsci.2018.04.018

    Article  Google Scholar 

  24. De Silva A-K-M, Gamage J-R, Harrison C-S (2017) Assessment of environmental performance of shaped tube electrolytic machining (STEM) and capillary drilling (CD) of superalloys. CIRP Ann 66:57–60. https://doi.org/10.1016/j.cirp.2017.04.110

    Article  Google Scholar 

  25. Sathish T (2019) Experimental investigation of machined hole and optimization of machining parameters using electrochemical machining. J Mater Res Technol 8:4354–4363. https://doi.org/10.1016/j.jmrt.2019.07.046

    Article  Google Scholar 

  26. Kumar A, Pabla B-S (2021) Review on optimized process parameters of electrochemical machining and its variants. Mater Today Proc 46:10854–10860. https://doi.org/10.1016/j.matpr.2021.01.807

    Article  Google Scholar 

  27. Sakamoto M, Natsu W (2020) Study on machining instability phenomenon in electrochemical machining of large aspect-ratio holes. Procedia CIRP 95:777–781. https://doi.org/10.1016/j.procir.2020.02.316

    Article  Google Scholar 

  28. Wang H-J, Yang T (2021) A review on laser drilling and cutting of silicon. J Eur Ceram Soc 41:4997–5015. https://doi.org/10.1016/j.jeurceramsoc.2021.04.019

    Article  Google Scholar 

  29. Gautam G-D, Pandey A-K (2018) Pulsed Nd:YAG laser beam drilling: a review. Opt Laser Technol 100:183–215. https://doi.org/10.1016/j.optlastec.2017.09.054

    Article  Google Scholar 

  30. Zhang Y, He X, Yu G, Li S, Tian C, Ning W, Zhang Y (2022) Dynamic evolution of keyhole during multi-pulse drilling with a millisecond laser on 304 stainless steel. Opt Laser Technol 152:108151. https://doi.org/10.1016/j.optlastec.2022.108151

    Article  Google Scholar 

  31. Keerthi P-P-S, Sreenivasa Rao M (2022) Numerical simulation of laser micro drilling of polymethyl Methacrylate. Mater Today Proc 67:1085–1089. https://doi.org/10.1016/j.matpr.2022.07.057

    Article  Google Scholar 

  32. Liu C, Zhang X, Wang G, Wang Z, Gao L (2021) New ablation evolution behaviors in micro-hole drilling of 2.5D Cf/SiC composites with millisecond laser. Ceram Int 47:29670–29680. https://doi.org/10.1016/j.ceramint.2021.07.138

    Article  Google Scholar 

  33. Sharma S, Mandal V, Ramakrishna S-A, Ramkumar J (2018) Numerical simulation of melt hydrodynamics induced hole blockage in Quasi-CW fiber laser micro-drilling of TiAl6V4. J Mater Process Technol 262:131–148. https://doi.org/10.1016/j.jmatprotec.2018.06.038

    Article  Google Scholar 

  34. Sun A, Chang Y, Liu H (2018) Metal micro-hole formation without recast layer by laser machining and electrochemical machining. Optik 171:694–705. https://doi.org/10.1016/j.ijleo.2018.06.099

    Article  Google Scholar 

  35. Deng Y, Zhou Y, Zhang Y, Chen D, Zhou X (2022) Numerical and experimental analysis of nanosecond laser ablation of SiC. Mater Sci Semicond Process 151:107020. https://doi.org/10.1016/j.mssp.2022.107020

    Article  Google Scholar 

  36. Zhang F, Wang J, Wang X, Zhang J, Hayasaki Y, Kim D, Sun S (2021) Experimental study of nickel-based superalloy IN792 with femtosecond laser drilling method. Opt Laser Technol 143:107335. https://doi.org/10.1016/j.optlastec.2021.107335

    Article  Google Scholar 

  37. Zhang Z, Wang W, Jiang R, Zhang X, Xiong Y, Mao Z (2020) Investigation on geometric precision and surface quality of microholes machined by ultrafast laser. Opt Laser Technol 121:105834. https://doi.org/10.1016/j.optlastec.2019.105834

    Article  Google Scholar 

  38. Kumar D, Gururaja S (2020) Investigation of hole quality in drilled Ti/CFRP/Ti laminates using CO2 laser. Opt Laser Technol 126:106130. https://doi.org/10.1016/j.optlastec.2020.106130

    Article  Google Scholar 

  39. Ho C-C, Chang Y-J, Hsu J-C, Chiu C-M, Kuo C-L (2016) Optical emission monitoring for defocusing laser percussion drilling. Measurement 80:251–258. https://doi.org/10.1016/j.measurement.2015.10.031

    Article  Google Scholar 

  40. Zhao W, Mei X, Wang L (2022) Competitive mechanism of laser energy and pulses on holes ablation by femtosecond laser percussion drilling on AlN ceramics. Ceram Int 48:36297–36304. https://doi.org/10.1016/j.ceramint.2022.08.189

    Article  Google Scholar 

  41. Solati A, Hamedi M, Safarabadi M (2019) Combined GA-ANN approach for prediction of HAZ and bearing strength in laser drilling of GFRP composite. Opt Laser Technol 113:104–115. https://doi.org/10.1016/j.optlastec.2018.12.016

    Article  Google Scholar 

  42. Kumar Saini S, Kumar Dubey A (2021) Parameters optimization for microcrack width in laser trepanned hole. Mater Today Proc 44:3055–3058. https://doi.org/10.1016/j.matpr.2021.02.443

    Article  Google Scholar 

  43. Zhang T, Zhang L, Zhang C, Chen X, Li J (2021) Physical study of spatter and melt pool dynamics during millisecond laser metals drilling. Opt Commun 482:126627. https://doi.org/10.1016/j.optcom.2020.126627

    Article  Google Scholar 

  44. Yalukova O, Sárady I (2006) Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths. Compos Sci Technol 66:1289–1296. https://doi.org/10.1016/j.compscitech.2005.11.002

    Article  Google Scholar 

  45. Zhang Z, Liu Y, Xu J, Miao B, Zhao Z, Yang Z, Wang C, Xu W (2023) Temporally modulated laser power dynamic drilling strategy with comprehensive optimization of quality and efficiency. J Manuf Process 101:38–52. https://doi.org/10.1016/j.jmapro.2023.05.089

    Article  Google Scholar 

  46. Kar T, Deshmukh S-S, Datta S, Goswami A (2023) An experimental study of low power fiber laser micro drilling of Aluminium 6061 alloy. Mater Today Proc 82:96–102. https://doi.org/10.1016/j.matpr.2022.11.483

    Article  Google Scholar 

  47. Sun T, Fan Z, Sun X, Ji Y, Zhao W, Cui J, Mei X (2023) Femtosecond laser drilling of film cooling holes: Quantitative analysis and real-time monitoring. J Manuf Process 101:990–998. https://doi.org/10.1016/j.jmapro.2023.06.059

    Article  Google Scholar 

  48. Chen M, Guo B, Jiang L, Liu Z, Qian Q (2023) Analysis and optimization of the heat affected zone of CFRP by femtosecond laser processing. Opt Laser Technol 167:109756. https://doi.org/10.1016/j.optlastec.2023.109756

    Article  Google Scholar 

  49. Zhang Y, Li S, Yu Y, Tian C, Li Z, Zhang Y, He X, Yu G (2022) Surface morphology and microstructure of the hole sidewall during drilling of polyether-ether-ketone(PEEK) via single-pulse laser. J Manuf Process 83:488–501. https://doi.org/10.1016/j.jmapro.2022.09.023

    Article  Google Scholar 

  50. Zhang H, Kang M, Ma C, Mao Y, Wang X, Zhang Y (2023) Experimental investigation and optimization of modification during backside-water-assisted laser drilling using flowing water. J Manuf Process 101:999–1012. https://doi.org/10.1016/j.jmapro.2023.06.055

    Article  Google Scholar 

  51. Chen Q, Wang H-J, Lin D-T, Zuo F, Zhao Z-X, Lin H-T (2018) Characterization of hole taper in laser drilling of silicon nitride ceramic under water. Ceram Int 44:13449–13452. https://doi.org/10.1016/j.ceramint.2018.04.173

    Article  Google Scholar 

  52. Han Y, Zhang J, Liu Y, Sheng M, Wang X, Sun T (2023) Investigation of through micropatterns fabrication on C194 copper foil by ultraviolet nanosecond pulsed laser microdrilling. Opt Laser Technol 160:109092. https://doi.org/10.1016/j.optlastec.2022.109092

    Article  Google Scholar 

  53. Ai S, Xiao G, Deng Z, Huang Y, Liu S, Lin O, Song S (2023) Surface integrity of drilling Ti-6Al-4V micro-holes using the ultrashort pulse laser with different three-dimensional paths planning. J Manuf Process 102:244–258. https://doi.org/10.1016/j.jmapro.2023.07.044

    Article  Google Scholar 

  54. Ho C-C, Kao C-Y (2023) Laser percussion drilling of transparent hard and brittle materials with ring-shaped electrodes. J Manuf Process 101:432–445. https://doi.org/10.1016/j.jmapro.2023.06.025

    Article  Google Scholar 

  55. Li W, Rong Y, Huang Y, Chen L, Yang Z, Zhang G (2023) Effect of thermal damage on dynamic and static mechanical properties of CFRP short pulse laser hole cutting. Eng Fract Mech 286:109306. https://doi.org/10.1016/j.engfracmech.2023.109306

    Article  Google Scholar 

  56. Kim K-R, Cho J-H, Lee N-Y, Kim H-J, Cho S-H, Park H-J, Choi B (2016) High-precision and ultrafast UV laser system for next-generation flexible PCB drilling. J Manuf Syst 38:107–113. https://doi.org/10.1016/j.jmsy.2015.12.001

    Article  Google Scholar 

  57. Zhai Z, Fan Q, Qu Y, Zhang H, Zhang Y, Cui Y (2023) Heat transfer mechanism of fiber reinforced composites processed by pulsed laser. Opt Lasers Eng 163:107473. https://doi.org/10.1016/j.optlaseng.2023.107473

    Article  Google Scholar 

  58. Wlodarczyk K-L, Brunton A, Rumsby P, Hand D-P (2016) Picosecond laser cutting and drilling of thin flex glass. Opt Lasers Eng 78:64–74. https://doi.org/10.1016/j.optlaseng.2015.10.001

    Article  Google Scholar 

  59. Takahashi K, Tsukamoto M, Masuno S, Sato Y (2016) Heat conduction analysis of laser CFRP processing with IR and UV laser light. Compos Part Appl Sci Manuf 84:114–122. https://doi.org/10.1016/j.compositesa.2015.12.009

    Article  Google Scholar 

  60. Benavides O, De La Cruz ML, Mejia E-B, Ruz Hernandez J-A, Flores Gil A (2016) Laser wavelength effect on nanosecond laser light reflection in ablation of metals. Laser Phys 26:126101. https://doi.org/10.1088/1054-660X/26/12/126101

    Article  Google Scholar 

  61. Mustafa H, Matthews D-T-A, Römer G-R-B-E (2022) Wavelength dependence of picosecond-pulsed laser ablation of hot-dip galvanized steel. Appl Phys A 128:296. https://doi.org/10.1007/s00339-022-05393-4

    Article  Google Scholar 

  62. Mustafa H, Pohl R, Bor T-C, Pathiraj B, Matthews D-T-A, Römer G-R-B-E (2018) Picosecond-pulsed laser ablation of zinc: crater morphology and comparison of methods to determine ablation threshold. Opt Express 26:18664. https://doi.org/10.1364/OE.26.018664

    Article  Google Scholar 

  63. Hagemann H-J, Gudat W, Kunz C (1975) Optical constants from the far infrared to the x-ray region: mg, al, cu, ag, au, bi, c, and al_2o_3. J Opt Soc Am. https://doi.org/10.1364/josa.65.000742

  64. Johnson P, Christy R (1974) Optical constants of transition metals: Ti, V, Cr, Mn, Fe Co, Ni, and Pd. Phys Rev B 9:5056–5070. https://doi.org/10.1103/PhysRevB.9.5056

    Article  Google Scholar 

  65. Breitling D, Ruf A, Dausinger F (2004) Fundamental aspects in machining of metals with short and ultrashort laser pulses. In: Herman PR, Fieret J, Pique A, et al (eds). San Jose, CA, p 49. https://doi.org/10.1117/12.541434

  66. Von Der Linde D, Sokolowski-Tinten K, Bialkowski J (1997) Laser–solid interaction in the femtosecond time regime. Appl Surf Sci 109–110:1–10. https://doi.org/10.1016/S0169-4332(96)00611-3

    Article  Google Scholar 

  67. Zhang Z, Xu Z, Wang C, Liu S, Yang Z, Zhang Q, Xu W (2021) Molecular dynamics-guided quality improvement in the femtosecond laser percussion drilling of microholes using a two-stage pulse energy process. Opt Laser Technol 139:106968. https://doi.org/10.1016/j.optlastec.2021.106968

    Article  Google Scholar 

  68. Ali B, Litvinyuk I-V, Rybachuk M (2021) Femtosecond laser micromachining of diamond: current research status, applications and challenges. Carbon 179:209–226. https://doi.org/10.1016/j.carbon.2021.04.025

    Article  Google Scholar 

  69. Zheng J-X, Tian K-S, Qi J-Y, Guo M-R, Liu X-Q (2023) Advances in fabrication of micro-optical components by femtosecond laser with etching technology. Opt Laser Technol 167:109793. https://doi.org/10.1016/j.optlastec.2023.109793

    Article  Google Scholar 

  70. Sundaram S-K, Mazur E (2002) Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1:217–224. https://doi.org/10.1038/nmat767

    Article  Google Scholar 

  71. Wang P, Zhang Z, Liu D, Qiu W, Zhang Y, Zhang G (2022) Comparative investigations on machinability and surface integrity of CFRP plate by picosecond laser vs laser induced plasma micro-drilling. Opt Laser Technol 151:108022. https://doi.org/10.1016/j.optlastec.2022.108022

    Article  Google Scholar 

  72. Zhao W, Shen X, Liu H, Wang L, Jiang H (2020) Effect of high repetition rate on dimension and morphology of micro-hole drilled in metals by picosecond ultra-short pulse laser. Opt Lasers Eng 124:105811. https://doi.org/10.1016/j.optlaseng.2019.105811

    Article  Google Scholar 

  73. Shin J, Kang S, Park C, Kim J-O (2019) A study on the effect of Cu reflector in glass drilling using a pulsed NIR laser. Opt Laser Technol 116:328–337. https://doi.org/10.1016/j.optlastec.2019.03.049

    Article  Google Scholar 

  74. Yang Z, Lu Y, Li W, Chen C, Chen L (2023) Effect of scanning spacing on the efficiency of CFRP hole-cutting with multi-pass scanning strategy by nanosecond laser. J Manuf Process 102:205–217. https://doi.org/10.1016/j.jmapro.2023.07.048

    Article  Google Scholar 

  75. Kim B, Iida R, Kiyokawa S, Fushinobu K (2018) Effect of beam profile on nanosecond laser drilling of 4H-SIC. J Laser Appl 30:032207. https://doi.org/10.2351/1.5040597

    Article  Google Scholar 

  76. Weck A, Crawford T-H-R, Wilkinson D-S, Haugen H-K, Preston J-S (2008) Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Appl Phys A 90:537–543. https://doi.org/10.1007/s00339-007-4300-6

    Article  Google Scholar 

  77. Hernandez-Castaneda J-C, Lim H-G, Wan Y-C, Zheng H (2020) An experimental investigation of laser drilling nitrile butadine (NBR) rubber. Int J Adv Manuf Technol 108:1139–1152. https://doi.org/10.1007/s00170-019-04622-0

    Article  Google Scholar 

  78. Sun X, Li Y, Yu Z, Xu J, Yu H (2022) Micro-hole texture prepared on PCD tool by nanosecond laser. Opt Laser Technol 147:107615. https://doi.org/10.1016/j.optlastec.2021.107615

    Article  Google Scholar 

  79. Alsoruji G, Muthuramalingam T, Moustafa E-B, Elsheikh A (2022) Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy. J Mater Res Technol 18:720–730. https://doi.org/10.1016/j.jmrt.2022.02.112

    Article  Google Scholar 

  80. Chen D-M, Li Z-G, Li J-J, Li J-X (2010) The technology research of CO2 laser micropore drilling on carbon steel. Advanced Materials Research 139–141:777–781

    Article  Google Scholar 

  81. Hanon M-M, Akman E, Genc Oztoprak B, Gunes M, Taha Z-A, Hajim K-I, Kacar E, Gundogdu O, Demir A (2012) Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser. Opt Laser Technol 44:913–922. https://doi.org/10.1016/j.optlastec.2011.11.010

    Article  Google Scholar 

  82. Li W, Huang Y, Chen X, Zhang G, Rong Y, Lu Y (2021) Study on laser drilling induced defects of CFRP plates with different scanning modes based on multi-pass strategy. Opt Laser Technol 144:107400. https://doi.org/10.1016/j.optlastec.2021.107400

    Article  Google Scholar 

  83. Li W, Zhang G, Huang Y, Rong Y (2021) UV laser high-quality drilling of CFRP plate with a new interlaced scanning mode. Compos Struct 273:114258. https://doi.org/10.1016/j.compstruct.2021.114258

    Article  Google Scholar 

  84. Ouyang W, Jiao J, Xu Z, Xia H, Ye Y, Zou Q, Tian R, Sheng L (2021) Experimental study on CFRP drilling with the picosecond laser “double rotation” cutting technique. Opt Laser Technol 142:107238. https://doi.org/10.1016/j.optlastec.2021.107238

    Article  Google Scholar 

  85. Jia X, Chen Y, Wang H, Zhu G, Zhu X (2020) Experimental study on nanosecond-millisecond combined pulse laser drilling of alumina ceramic with different spot sizes. Opt Laser Technol 130:106351. https://doi.org/10.1016/j.optlastec.2020.106351

    Article  Google Scholar 

  86. Wang R, Dong X, Wang K, Sun X, Fan Z, Duan W (2019) Two-step approach to improving the quality of laser micro-hole drilling on thermal barrier coated nickel base alloys. Opt Lasers Eng 121:406–415. https://doi.org/10.1016/j.optlaseng.2019.05.002

    Article  Google Scholar 

  87. Zheng H-Y, Huang H (2007) Ultrasonic vibration-assisted femtosecond laser machining of microholes. J Micromechanics Microengineering 17:N58–N61. https://doi.org/10.1088/0960-1317/17/8/N03

    Article  Google Scholar 

  88. Alavi S-H, Harimkar S-P (2015) Ultrasonic vibration-assisted continuous wave laser surface drilling of materials. Manuf Lett 4:1–5. https://doi.org/10.1016/j.mfglet.2015.01.002

    Article  Google Scholar 

  89. Yue T-M, Chan T-W, Man H-C, Lau W-S (1996) Analysis of ultrasonic-aided laser drilling using finite element method. CIRP Ann 45:169–172. https://doi.org/10.1016/S0007-8506(07)63040-6

    Article  Google Scholar 

  90. Wu H, Zou P, Cao J, Ehmann K-F (2020) Vibrating-lens-assisted laser drilling J Manuf Process 55:389–398. https://doi.org/10.1016/j.jmapro.2020.03.005

    Article  Google Scholar 

  91. Kang D, Zou P, Wang W, Xu J, Shen C (2021) A lens ultrasonic vibration-assisted laser machining system for laser polishing and laser drilling of 304 stainless steel. Opt Laser Technol 144:107419. https://doi.org/10.1016/j.optlastec.2021.107419

    Article  Google Scholar 

  92. Tang Q, Wu C, Wu T (2021) Defocusing effect and energy absorption of plasma in picosecond laser drilling. Opt Commun 478:126410. https://doi.org/10.1016/j.optcom.2020.126410

    Article  Google Scholar 

  93. Li T, Ren N, Wang H, Zhou W, Wu N-E, Xia K, Xu Y, Tian J (2020) Femtosecond laser layered ring trepanning of stainless steel sheets with and without transverse magnetic assistance. Opt Laser Technol 129:106231. https://doi.org/10.1016/j.optlastec.2020.106231

    Article  Google Scholar 

  94. Balamurugan S, Bala Manikandan C, Balamurugan P (2018) A study on magnetic field assisted laserpercussion drilling and its effecton surface integrity. Arch Mater Sci Eng 1:35–40. https://doi.org/10.5604/01.3001.0012.7806

    Article  Google Scholar 

  95. Wang H, Xu Y, Liu J, Hu Q, Wang X, Ren N, Zhou W, Ren X (2021) Magnet-assisted laser hole-cutting in magnesium alloys with and without water immersion. J Manuf Process 61:539–560. https://doi.org/10.1016/j.jmapro.2020.11.026

    Article  Google Scholar 

  96. Ye C, Cheng G-J, Tao S, Wu B (2013) Magnetic field effects on laser drilling. J Manuf Sci Eng 135:061020. https://doi.org/10.1115/1.4025745

    Article  Google Scholar 

  97. Chang Y-J (2012) Magnetic assisted laser micromachining for highly reflective metals. J Laser MicroNanoengineering 7:254–259. https://doi.org/10.2961/jlmn.2012.03.0004

    Article  Google Scholar 

  98. Zhai Z, Wang W, Mei X, Wang K, Yang H (2017) Influence of plasma shock wave on the morphology of laser drilling in different environments. Opt Commun 390:49–56. https://doi.org/10.1016/j.optcom.2016.12.066

    Article  Google Scholar 

  99. Wang Y-F, Zhu H, Zhang C-Y, Zhang T-S, Wu Y-C, Du W-W (2022) Mechanism and experimental research of magnetic field rotation assisted laser machining of micro-holes. Chin J Lasers 49(16):7–15 ((in Chinese))

    Google Scholar 

  100. Zhou J, Guo W-L, Wang Z-Y, Xing Z-G, Cai Z-B, Wang H-D, Huang Y-F (2022) Research status of metal solidification based on magnetic field. Chin Surf Eng 35(03):154–169 ((in Chinese))

    Google Scholar 

  101. Zimmermann G, Pickmann C, Schaberger-Zimmermann E, Galindo V, Eckert K, Eckert S (2018) Do rotating magnetic fields unconditionally lead to grain refinement? A case study for directionally solidified Al-10wt%Cu alloys. Materialia 3:326–337. https://doi.org/10.1016/j.mtla.2018.08.036

    Article  Google Scholar 

  102. Wang Y, Li Y, Guan Y (2023) Surface modification and mechanical properties of laser powder bed fusion Inconel 718 after magnetic-assisted laser polishing. Opt Laser Technol 162:109291. https://doi.org/10.1016/j.optlastec.2023.109291

    Article  Google Scholar 

  103. Huang M-Q, Zhou Q, Liu F, Huang J-J (2016) Effect of DC magnetic field on crystal orientation and mechanical properties of remelting Mg-Y-Cu-Zr Alloy. 4th 2016 Int Confer Mat Sci Eng (ICMSE 2016) 278–284. (in Chinese). https://doi.org/10.11896/j.issn.1005-023X.2016.22.010

  104. Harilal S-S, Tillack M-S, O’Shay B, Bindhu C-V, Najmabadi F (2004) Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys Rev E 69:026413. https://doi.org/10.1103/PhysRevE.69.026413

    Article  Google Scholar 

  105. Kumar A, Chaudhari V, Patel K, George S, Sunil S, Singh R-K, Singh R (2009) An experimental setup to study the expansion dynamics of laser blow-off plasma plume in variable transverse magnetic field. Rev Sci Instrum 80:033503. https://doi.org/10.1063/1.3095545

    Article  Google Scholar 

  106. Kumar A, Singh R-K, Prahlad V, Joshi H-C (2010) Effect of magnetic field on the expansion dynamics of laser-blow-off generated plasma plume: Role of atomic processes. Laser Part Beams 28:121–127. https://doi.org/10.1017/S026303460999067X

    Article  Google Scholar 

  107. Pagano C, Lunney J-G (2010) Lateral confinement of laser ablation plasma in magnetic field. J Phys Appl Phys 43:305202. https://doi.org/10.1088/0022-3727/43/30/305202

    Article  Google Scholar 

  108. Xia K, Wang H, Ren N, Ren X, Liu D, Shi C, Li T, Tian J (2021) Laser drilling in nickel super-alloy sheets with and without ultrasonic assistance characterized by transient in-process detection with indirect characterization after hole-drilling. Opt Laser Technol 134:106559. https://doi.org/10.1016/j.optlastec.2020.106559

    Article  Google Scholar 

  109. Xia K, Ren N, Wang H, Shi C (2018) Analysis for effects of ultrasonic power on ultrasonic vibration-assisted single-pulse laser drilling. Opt Lasers Eng 110:279–287. https://doi.org/10.1016/j.optlaseng.2018.04.022

    Article  Google Scholar 

  110. Wang H, Zhu S, Xu G, Zhou W, Li L, Zhang D-H, Ren N, Xia K, Shi C (2018) Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd:YAG laser. Opt Laser Technol 104:133–139. https://doi.org/10.1016/j.optlastec.2018.02.023

    Article  Google Scholar 

  111. Shi C, Ren N, Wang H, Xia K, Wang L (2018) Effects of ultrasonic assistance on microhole drilling based on Nd:YAG laser trepanning. Opt Laser Technol 106:451–460. https://doi.org/10.1016/j.optlastec.2018.05.003

    Article  Google Scholar 

  112. Lv J, Dong X, Wang K, Duan W, Fan Z, Mei X (2016) Study on process and mechanism of laser drilling in water and air. Int J Adv Manuf Technol 86:1443–1451. https://doi.org/10.1007/s00170-015-8279-4

    Article  Google Scholar 

  113. Xia K, Ren N, Lin Q, Yang H (2023) Femtosecond laser drilling in superalloy with water-based magnetic assistance. Opt Commun 527:128902. https://doi.org/10.1016/j.optcom.2022.128902

    Article  Google Scholar 

  114. Wang H, Xu Y, Zhu S, Zhou W, Wu N-E, Zibner F (2020) Water-based helical laser hole-cutting in nickel super-alloy GH4049 assisted by longitudinal and transverse magnetic fields with/without ultrasonic assistance. Opt Lasers Eng 128:105985. https://doi.org/10.1016/j.optlaseng.2019.105985

    Article  Google Scholar 

  115. Wang H, Zhu S, Xu Y, Ren N (2019) Experimental investigation on effects of water-based ultrasonic vibrations, transverse magnetic field and water temperatures on percussion laser drilling performance. Opt Laser Technol 112:395–408. https://doi.org/10.1016/j.optlastec.2018.11.033

    Article  Google Scholar 

  116. Amiri S, Khajehzadeh M, Razfar M-R (2020) Magnetic field and ultrasonic aided laser drilling effect on Ti6Al4V microstructural characteristics. Mater Manuf Process 35:1832–1841. https://doi.org/10.1080/10426914.2020.1802041

    Article  Google Scholar 

  117. Wang H, Dai X, Xu Y, Liu J, Shan J, Ren N, Ren X (2021) Real-time observation with metallurgical examination for laser percussion drilling in stainless steel sheets using simultaneous magnetic-ultrasonic assistance. Opt Commun 493:126869. https://doi.org/10.1016/j.optcom.2021.126869

    Article  Google Scholar 

Download references

Funding

This work was support by 111 project of China [No. D21017]; Belt and Road Innovative Talents Exchange Program, China [No. DL2021025003L]; Major Science and Technology Innovation project of Shandong Province [No. 2019JZZY010402]; Science and Technology Project of Qingdao West Coast New Area [No. 2021–70]; China Postdoctoral Science Foundation [No. 2020M672016]; and China-Slovakia Exchange Program [No. 2022–5-12].

Author information

Authors and Affiliations

Authors

Contributions

Tao Wei: methodology, data curation, writing original draft. Shufeng Sun: resources, funding acquisition. Fengyun Zhang: supervision, project administration. Xi Wang: Formal analysis, validation. Pingping Wang: validation, data curation. Xunhuan Liu: conceptualization, formal analysis. Qinyang Wang: visualization.

Corresponding authors

Correspondence to Shufeng Sun or Fengyun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Sun, S., Zhang, F. et al. A review on laser drilling optimization technique: parameters, methods, and physical-field assistance. Int J Adv Manuf Technol 131, 5691–5710 (2024). https://doi.org/10.1007/s00170-024-13189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13189-4

Keywords

Navigation