Skip to main content

Advertisement

Log in

Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2) n (NH3)]CuCl4, n = 2–9

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6–9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2− anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy ΔH L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV–visible range. The band gap energy calculated using Kubelka–Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.B. Mitzi, K. Chondroudis, C.R. Kagan, Organic–inorganic electronics. IBM J. Res. Dev. 45(1), 29–47 (2001)

    Article  Google Scholar 

  2. Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. Cryst. Eng. Comm. 12, 2646–2662 (2010)

    Article  Google Scholar 

  3. S. González-Carrero, R.E. Galian, J. Pérez-Prieto, Organometal halide perovskites: bulk low-dimension materials and nanoparticles. Part. Syst. Charact. 32(7), 709–720 (2015)

    Article  Google Scholar 

  4. Weiwei Liu, Jun Xing, Jiaxin Zhao, Xinglin Wen, Kai Wang, Lu Peixiang, Qihua Xiong, Giant two-photon absorption and its saturation in 2D organic–inorganic perovskite. Adv. Opt. Mater. 5, 1601045 (2017)

    Article  Google Scholar 

  5. M.F. Mostafa, S.S. El-khiyami, S.K. Abdel-Aal, Crystal structure, phase transition and conductivity study of two new organic-inorganic hybrids: [(CH2)7(NH3)2]X2, X = Cl/Br. J. Mol. Struct. 1127, 59–73 (2017)

    Article  ADS  Google Scholar 

  6. M.F. Mostafa, A. Hassen, Phase transition and electric properties of long chain Cd(II) layered perovskites. Phase Transit. 79, 305–311 (2006)

    Article  Google Scholar 

  7. P. Mondal, S.K. Abdel-Aal, D. Das, S.K. Manirul Islam, Catalytic activity of crystallographically characterized organic–inorganic hybrid containing 1,5 di-amino-pentane tetrachloro manganate with perovskite type structure. Cat. Lett. (2017). doi:10.1007/s10562-017-2112-7

    Google Scholar 

  8. Seham K. Abdel-Aal, Synthesis, characterization, thermal, and electric properties of diammonium perovskite hybrid [NH3–(CH2)7–NH3]CaCl2Br 2″. Solid State Ion. 303, 29–36 (2017)

    Article  Google Scholar 

  9. K. Pradeesh, G.S. Yadav, M. Singh, G. Vijaya Prakash, Synthesis, structure and optical studies of inorganic–organic hybrid semiconductor, [NH3(CH2)12NH3]PbI4. Mater. Chem. Phys. 124, 44–47 (2010)

    Article  Google Scholar 

  10. Mingjian Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11(10), 872–877 (2016)

    Article  ADS  Google Scholar 

  11. M. Khechoubi, A. Bendani, N.B. Chanh, C. Courseille, R. Duplessix, M. Couzi, Thermal conformational changes in a bidimensional molecular composite material: a thermodynamic and crystallographic study of NH3–(CH2)4–NH3 CdCl4. J. Phys. Chem. Solids 55(11), 1277–1288 (1994)

    Article  ADS  Google Scholar 

  12. A. Lamhamdi, E. Mejdoubi, K. Fejfarová, M. Dusek, B. El Bali, Poly [ethane-1,2-diammonium tetra-chlorido-cadmate(II)]. Acta Cryst. E65, m215–m216 (2009)

    Google Scholar 

  13. K. Tichy, J. Bene, W. Hxlg, H. Arend, Neutron diffraction study of twinned crystals of ethylenediammonium copper tetraehloride and ethylenediammonium manganese tetrachloride. Acta Cryst. B34, 2970–2981 (1978)

    Article  Google Scholar 

  14. J.K. Garland, K. Emerson, M.R. Pressprich, Structures of four- and five-carbon alkyldiammonium tetrachlorocuprate(II) and tetrabromocuprate(II) salts. Acta Cryst. C46, 1603–1609 (1990)

    Google Scholar 

  15. T. Maris, G. Bravic, N.B. Chanh, J.M. Leger, J.C. Bissey, A. Villesuzanne, R. Zouari, A. Daoud, Structures and thermal behavior in the series of two-dimensional molecular composites NH3–(CH2)4–NH3 MCl4 related to the nature of the metal M. Part 1: Crystal structures and phase transitions in the case M = Cu and Pd. J. Phys. Chem. Solids 57(12), 1963–1975 (1996)

    Article  ADS  Google Scholar 

  16. Seham K. Abdel-Aal, Ahmed S. Abdel-Rahman, Synthesis, structure, lattice energy and enthalpy of 2D perovskite hybrid [NH3(CH2)4NH3]CoCl4, compared to [NH3(CH2) n NH3]CoCl4, n = 3–9. J. Cryst. Growth 457, 282–288 (2017)

    Article  ADS  Google Scholar 

  17. J.J. Criado, A. Jiménez-Sánchez, F.H. Cano, R. Sáez-Puche, E. Rodríguez-Fernández, Preparation and characterization of tetrachlorocobaltates(II) of [alpha],[omega]-alkylenediammonium. Magnetic and thermal properties Crystal structure of [NH3(CH2)5NH3]CoCl4. Acta Cryst. B55, 947–952 (1999)

    Article  Google Scholar 

  18. A.H. Mahmoudkhani, V. Langer, The lamellar architecture of 1,6-hexa-methyl-enedi-ammonium tetra-chloro-cobaltate(II). Acta Cryst. E58, 592–594 (2002)

    Google Scholar 

  19. M.F. Mostafa, S.K. Abdel-Aal, A.K. Tammam, Crystal structure, thermal, electric and magnetic study of [(CH2)7(NH3)2]CoCl2Br2. Indian J. Phys. 88(1), 49–57 (2014)

    Article  ADS  Google Scholar 

  20. A. Kallel, J. Fail, H. Fuess, A. Daoud, 1,3-Propanediammonium Tetraehlorozincate(ll). Acta Cryst. B36, 2788–2790 (1980)

    Article  Google Scholar 

  21. M.F. Mostafa, A.A.A. Youssef, Magnetic and electric studies of a new Cu(II) perovskite-like material. Z. Naturforsch. 59a, 35–46 (2004)

    ADS  Google Scholar 

  22. M.F. Mostafa, S.A. El- Hakim, Structural phase transition and the dielectric permittivity of the model lipid bilayers [(CH2)12(NH3)2CuCl4]. Phase Transit 76(6), 587–599 (2003)

    Article  Google Scholar 

  23. D. Phelps, D. Losee, W. Hatfield, D. Hodgson, Two-dimensional magnetic systems. Structural and magnetic characterization of bis(propylene-l,3-diammonium) tetrachlorocuprate (II). Inorg. Chem. 15, 3147–3152 (1977)

    Article  Google Scholar 

  24. B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S. Semak, Ch. Simon, I. Bakaimi, Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions. Phys. Rev. B 81, 224434 (2010)

    Article  ADS  Google Scholar 

  25. P.A.N. Xiao-wei, W.U. Gang, W.A.N.G. Mang, C.H.E.N. Hong-zheng, Partially reversible photochromic behavior of organic–inorganic perovskites with copper(II) chloride. J. Zhejiang Univ. Sci. A 10(5), 710–715 (2009)

    Article  Google Scholar 

  26. J. Aazza, K. Elmebrouki, M. Khechoubi, A. Khmou, Electron spin resonance (ESR) Study of four perovskite layer compounds [NH3–(CH2)3–COOH]2 CuCl4, [CH3–(CH2)7–NH3]2CuCl4, [NH3–(CH2)8–NH3]CuCl4, and [NH3–(CH2)10–NH3] CuCl4. J. Asian Sci. Res. 3(11), 1072–1077 (2013)

    Google Scholar 

  27. K. Halvorson, R.D. Willett, Structures of ethylenediammonium tetrabromoeuprate(II) and propylenediammonium tetrabromocuprate(II). Acta Cryst. C44, 2071–2076 (1988)

    Google Scholar 

  28. Teruya Ishihara, Jun Takahashi, Takenari Goto, Optical-properties due to electronic-transitions in 2-dimensional semiconductors (CnH2n+ 1NH3)2PbI4. Phys. Rev. B 42(17), 11099–11107 (1990)

    Article  ADS  Google Scholar 

  29. M.F. Mostafa, A.A.A. Youssef, S.S. Montasser, ShS Khyami, The frequency dependence of the conductivity and dielectric relaxation of [(CH2)3(NH3)2]Cu(II)Cl4. Z. Naturforsch. 60a, 837–847 (2005)

    ADS  Google Scholar 

  30. T. Maris, N.B. Chanh, J.C. Bissey, N. Filloleau, S. Flandrois, R. Zouari, A. Daoud, Phase transitions in a two dimensional molecular complex NH3–(CH2)4–NH3CuCl4. Phase Transit. 66, 81–98 (1998)

    Article  Google Scholar 

  31. R. Kind, S. Plesko, P. Gunter, J. Roos, J. Fousek, Structural phase transitions in the perovskite-type layer compounds NH3(CH2)3NH3CdCl4, NH3(CH2)4NH3MnCl4, and NH3(CH2)5NH3CdCl4. Phys. Rev. B 23, 5301 (1981)

    Article  ADS  Google Scholar 

  32. B. Cullity, S. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall Inc, New Jersey, 2001), pp. 167–171

    Google Scholar 

  33. H.D.B. Jenkins, H.K. Roobottom, J. Passmore, L. Glasser, Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg. Chem. 38, 3609–3620 (1999)

    Article  Google Scholar 

  34. H.D.B. Jenkins, L. Glasser, Ionic hydrates, MpXq·nH2O: lattice energy and standard enthalpy of formation estimation. Inorg. Chem. 41(17), 4378–4388 (2002)

    Article  Google Scholar 

  35. L. Glasser, H.D.B. Jenkins, Internally consistent ion volumes and their application in volume-based thermodynamics. Inorg. Chem. 47, 6195–6202 (2008)

    Article  Google Scholar 

  36. T.E. Mallouk, G.L. Rosenthal, G. Mueller, R. Brusasco, N. Bartlett, Fluoride ion affinities of germanium tetrafluoride and boron trifluoride from thermodynamic and structural data for (SF3)2GeF6, ClO2GeF5, and ClO2BF4. Inorg. Chem. 23(20), 3167–3173 (1984)

    Article  Google Scholar 

  37. M.A. Green, Y. Jiang, A.M. Soufiani, A. Ho-Baillie, Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6, 4774–4785 (2015)

    Article  Google Scholar 

  38. A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectron chemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007)

    Article  Google Scholar 

  39. P. Zolfaghari, G.A. de Wijs, R.A. de Groo, The electronic structure of organic–inorganic hybrid compounds: (NH4)2CuCl4, (CH3NH3)2CuCl4 and (C2H5NH3)2CuCl4. J. Phys. Condens. Matter 25, 295502 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of Cairo University, Egypt, facilities provided by Heriot-Watt University, Edinburgh, Scotland, UK and Institute of Solid State Physics ISSP RAS Chernogolovka, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seham K. Abdel-Aal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aal, S.K., Kocher-Oberlehner, G., Ionov, A. et al. Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2) n (NH3)]CuCl4, n = 2–9. Appl. Phys. A 123, 531 (2017). https://doi.org/10.1007/s00339-017-1150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1150-8

Navigation