Skip to main content

Advertisement

Log in

Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

1050 commercial purity aluminum was subjected to severe plastic deformation through constrained groove pressing (CGP) at room temperature. Transmission electron microscope observations showed that after four CGP passes the majority of microstructure is composed of elongated grains/subgrains whose width/length average sizes are 506/1440 nm. This ultrafine-grained microstructure leads to a significant increase in yield strength of starting material from 93 to 182 MPa. At the same time, after four passes of CGP the material still displays a considerable ductility of 19%. Microhardness profiles reveal that average microhardness value in sample increases monotonically with increased straining during CGP. However, the degree of deformation homogeneity in samples remains almost unchanged at higher number passes. The latter was also confirmed by non-uniform distribution of imposed plastic strain in samples predicted by finite-element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103 (2000)

    Article  Google Scholar 

  2. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)

    Article  Google Scholar 

  3. Y.H. Ji, J.J. Park, Mater. Sci. Eng. A 499, 14 (2009)

    Article  Google Scholar 

  4. D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Mater. Sci. Eng. A 328, 98 (2002)

    Article  Google Scholar 

  5. S.A.A. Akbari Mousavi, S.M. Ebrahimi, R. Madoliat, J. Mater. Process. Technol. 187–188, 725 (2007)

    Article  Google Scholar 

  6. M.S. Ghazani, A. Vajd, Model. Simul. Mater. Sci. Eng. 4, 32 (2014)

    Google Scholar 

  7. J. Zrnik, T. Kovarik, Z. Novy, M. Cieslar, Mater. Sci. Eng. A 503, 126 (2009)

    Article  Google Scholar 

  8. S.S. Satheesh Kumar, T. Raghu, Mater. Des. 57, 114 (2014)

    Article  Google Scholar 

  9. S. Morattab, K. Ranjbar, M. Reihanian, Mater. Sci. Eng. A 528, 6912 (2011)

    Article  Google Scholar 

  10. A. Krishnaiah, U. Chakkingal, P. Venugopal, Scr. Mater. 52, 1229 (2005)

    Article  Google Scholar 

  11. A. Shirdel, A. Khajeh, M.M. Moshksar, Mater. Des. 31, 946 (2010)

    Article  Google Scholar 

  12. E. Hosseini, M. Kazeminezhad, Mater. Sci. Eng. A 526, 219 (2009)

    Article  Google Scholar 

  13. M. Borhani, F. Djavanroodi, Mater. Sci. Eng. A 546, 1 (2012)

    Article  Google Scholar 

  14. A. Sajadi, M. Ebrahimi, F. Djavanroodi, Mater. Sci. Eng. A 552, 97 (2012)

    Article  Google Scholar 

  15. J.W. Lee, J.J. Park, J. Mater. Process. Technol. 130–131, 208 (2002)

    Article  Google Scholar 

  16. S.C. Yoon, A. Krishnaiah, U. Chakkingal, H.S. Kim, Comput. Mater. Sci. 43, 641 (2008)

    Article  Google Scholar 

  17. S.S. Satheesh Kumar, I. Balasundar, T. Raghu, Int. J. Comput. Mater. Sci. Eng. 2, 1 (2013)

    Google Scholar 

  18. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma, R.Z. Valiev, J. Mater. Res. 18, 1908 (2003)

    Article  ADS  Google Scholar 

  19. B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992)

    Article  ADS  Google Scholar 

  20. R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)

    Article  Google Scholar 

  21. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Annu. Rev. Mater. Res. 40, 319 (2010)

    Article  ADS  Google Scholar 

  22. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A 540, 1 (2012)

    Article  Google Scholar 

  23. M. Kawasaki, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 524, 143 (2009)

    Article  Google Scholar 

  24. P.L. Sun, P.W. Kao, C.P. Chang, Metall. Mater. Trans. A 35A, 1359 (2004)

    Article  ADS  Google Scholar 

  25. K. Peng, Y. Zhang, L.L. Shaw, K.W. Qian, Acta Mater. 57, 5543 (2009)

    Article  Google Scholar 

  26. G.E. Dieter, Mechanical Metallurgy (McGraw Hill, Singapore, 1998)

    Google Scholar 

  27. D. Jia, Y.M. Wang, T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Appl. Phys. Lett. 79, 611 (2001)

    Article  ADS  Google Scholar 

  28. Y.M. Wang, E. Ma, Acta Mater. 52, 1699 (2004)

    Article  Google Scholar 

  29. R.Z. Valiev, J. Mater. Sci. 42, 1483 (2007)

    Article  ADS  Google Scholar 

  30. J. May, H.W. Hoppel, M. Goken, Scr. Mater. 53, 189 (2005)

    Article  Google Scholar 

  31. K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Mater. Chem. Phys. 143, 1032 (2014)

    Article  Google Scholar 

  32. R.Z. Valiev, I.V. Alexandrov, T.C. Lowe, Y.T. Zhu, J. Mater. Res. 17, 5 (2002)

    Article  ADS  Google Scholar 

  33. X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, J. Appl. Phys. 96, 636 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. K. J. Kurzydlowski for providing the opportunity to perform TEM observations in Warsaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hajizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, K., Ejtemaei, S. & Eghbali, B. Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing. Appl. Phys. A 123, 504 (2017). https://doi.org/10.1007/s00339-017-1123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1123-y

Navigation