Skip to main content
Log in

Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Present work elucidates the gas sensing and electrochemical sensing capabilities of sol–gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuat. B Chem. 5, 7–19 (1991)

    Article  Google Scholar 

  2. R.K. Dutta, P.K. Shrama, A.C. Pandey, DNA base (cytosine) modified/capped ultrasmall Gd2S3:Eu3+ gadofluoroprobes for platelet isolation. Appl. Phys. Lett. 97, 253702–253705 (2010)

    Article  ADS  Google Scholar 

  3. P.K. Shrama, C. Rudowicz, A.C. Pandey, G. Zolnierkiewicz, N. Guskos, Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: a spectroscopic view. J. Appl. Phys. 106, 094314–094319 (2009)

    Article  ADS  Google Scholar 

  4. A. Sutka, R. Pärna, G. Mezinskis, V. Kisand, Effects of Co ion addition and annealing conditions on nickel ferrite gas response. Sens. Actuators B Chem. 192, 173–180 (2014)

    Article  Google Scholar 

  5. A. Hosseinpour, H. Sadeghi, A. Morisako, Simulation of DC-hopping conduction in spinel ferrites using free electron gas model. J. Magn. Magn. Mater. 316, 283–286 (2007)

    Article  ADS  Google Scholar 

  6. S. Anjum, H.G. Jaffari, A.K. Rumaiz, S.M. Rafique, I.S. Shah, Role of vacancies in transport and magnetic properties of nickel ferrite thin films. J. Phys. D Appl. Phys. 43, 265001–265008 (2010)

    Article  ADS  Google Scholar 

  7. P. Rao, R.V. Godbole, S. Bhagwat, Chlorine gas sensing performance of palladium doped nickel ferrite thin films. J. Magn. Magn. Mater. 405, 219–224 (2016)

    Article  ADS  Google Scholar 

  8. C. Doroftei, P.D. Popa, F. Iacomi, The influence of Zn ions on the microstructures, electrical and gas sensing properties of La0.8Pb0.2FeO3 perovskite. Sens. Actuators B Chem. 191, 239–245 (2014)

    Article  Google Scholar 

  9. P. Rao, R.V. Godbole, S. Bhagwat, Copper doped nickel ferrite nano-crystalline thin films: a potential gas sensor towards reducing gases. Mater. Chem. Phys. 171, 260–266 (2016)

    Article  Google Scholar 

  10. A. Sutka, G. Mezinskis, A. Lusis, M. Stingaciu, Gas sensing properties of Zn-doped p-type nickel ferrite. Sensor. Actuat. B Chem. 171–172, 354–360 (2012)

    Article  Google Scholar 

  11. N. Makisimovich, V. Vorotyntsev, N. Nikitina, O. Kaskevich, P. Karabun, F. Martynenko, Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis. Sens. Actuators B Chem. 36, 419–421 (1996)

    Article  Google Scholar 

  12. Z. Wang, X. Zhang, Y. Li, Z. Liu, Z. Hao, Synthesis of graphene-NiFe2O4 nanocomposite and their electrochemical capacitive behavior. J. Mater. Chem. A 1, 6363–6399 (2013)

    Google Scholar 

  13. J. Narang, N. Malhotra, S. Singh, G. Singh, C.S. Pundir, Monitoring analgesic drug using sensing method based on nanocomposite. RSC Adv. 5, 2396–2404 (2015)

    Article  Google Scholar 

  14. J.E. Sullivan, H.C. Farrar, Fever and antipyretic use in children. Pediatrics 127, 580–587 (2011)

    Article  Google Scholar 

  15. N.F. Atta, M.F. El-Kady, Poly (3-methylthiophene)/palladium sub-micro-modified sensor electrode, part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen. Talanta 79, 639–647 (2009)

    Article  Google Scholar 

  16. B. Saraswathyamma, I. Grzybowska, C. Orlewska, J. Radecki, W. Dehaen, K.G. Kumar, H. Radecka, Electroactive dipyrromethene-Cu(II) monolayers deposited onto gold electrodes for voltammetric determination of paracetamol. Electroanal. 20, 2317–2323 (2008)

    Article  Google Scholar 

  17. B.C. Lourencao, R.A. Medeiros, R.C. Rocha, L.H. Mazo, O. Fatibello, Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using boron-doped diamond electrode. Talanta 78, 748–752 (2009)

    Article  Google Scholar 

  18. M.I. Walash, A.M. Elbrashy, M.A. Sultan, Polarographic-behavior and determination of paracetamol and salicylamide after treatment with nitrous-acid. Microchim. Acta 113, 113–124 (1994)

    Article  Google Scholar 

  19. N. Rezlescu, N. Iftimie, E. Rezelescu, C. Doroftei, P.D. Popa, Semiconducting gas sensor for acetone based on the fine grained nickel ferrite. Sens. Actuators B Chem. 114, 427–432 (2006)

    Article  Google Scholar 

  20. J.M. Hastzngs, L.M. Corliss, Neutron diffraction studies of Zinc ferrite and Nickel ferrite. Rev. Mod. Phys. 25, 114–119 (1953)

    Article  ADS  Google Scholar 

  21. S. Mondal, R. Madhuri, P.K. Sharma, PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titanis nanoparticles. J. Alloys. Compd. 646, 565–572 (2015)

    Article  Google Scholar 

  22. S. Mondal, R. Madhuri, P.K. Sharma, Electrochemical sensing of cyanometallic compound using TiO2/PVA nanocomposite-modified electrode. J. Appl. Electrochim. 47, 75–89 (2017)

    Article  Google Scholar 

  23. M.V. Vaishampayan, R.G. Deshmukh, I.S. Mulla, Influence of Pd doping on morphology and LPG response of SnO2 Sensor. Actuators B 131, 665–672 (2008)

    Article  Google Scholar 

  24. N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 86, 335–344 (1979)

    Article  ADS  Google Scholar 

  25. G. Zhang, C. Li, F. Chng, J. Chen, ZnFe2O4 tubes: synthesis and application to gas sensors with highly selective and low energy consumption. Sens. Actuators B Chem. 120, 403–410 (2007)

    Article  Google Scholar 

  26. S.R. Nalage, M.A. Chougule, S. Sen, V.B. Patil, Fabrication and characterization of nickel oxide NO2 sensor. J. Mater. Sci.: Mater. Electron. 24, 368–375 (2013)

    Google Scholar 

  27. J. Portier, G. Campet, J. Electrourneau, B. Tanguy, A simple model for the estimation of electronegativities of cations in different electronic states and coordinations. J. Alloy. Comp. 209, 285–289 (1994)

    Article  Google Scholar 

  28. P. Chen, R.L. McCreery, Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal. Chem. 68, 3958–3965 (1996)

    Article  Google Scholar 

  29. R. Manjunatha, D.H. Nagaraju, G.S. Suresh, J.S. Melo, S.F. D’Souza, T.V. Venkatesha, Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique. Electrochem. Acta. 56, 6619–6627 (2011)

    Article  Google Scholar 

  30. S. Samanta, R. Srivastava, Simultaneous determination of epinephrine and paracetamol at copper-cobalt oxide spinel decorated nanocrystalline zeolite modified electrodes. J. Colloid Interface Sci. 475, 126–135 (2016)

    Article  Google Scholar 

  31. G.C. Yang, L. Wang, Y.S. Yang, X.S. Chen, D.F. Zhou, J.B. Jia, D.F. Li, 4-Posphatephenyl covalently modified glassy carbon electrode for real time electrochemical monitoring of paracetamol release from electrospun nanofibers. Electroanalysis 24, 1937–1944 (2012)

    Article  Google Scholar 

  32. L. Liu, H. Lv, C. Wang, Z. Ao, G. Wang, Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochim. Acta 206, 259–269 (2016)

    Article  Google Scholar 

  33. X. Kang, J. Wang, H. Wu, J. Liua, I.A. Aksay, Y. Lin, A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81, 754–759 (2010)

    Article  Google Scholar 

  34. M. Devaraj, R. Saravanan, R.K. Deivasigamani, V.K. Gupta, F. Graciab, S. Jayadevan, Fabrication of novel shape Cu and Cu/Cu 2 O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 221, 930–941 (2016)

    Article  Google Scholar 

  35. A. Özcan, Y. Şahin, Selective and sensitive voltammetric determination of dopamine in blood by electrochemically treated pencil graphite electrodes. Anal. Chim. Acta 685, 9–14 (2011)

    Article  Google Scholar 

  36. P.K. Kalambate, A.K. Srivastava, Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sens. Actuators B Chem. 233, 237–248 (2016)

    Article  Google Scholar 

  37. I. Sadok, K.T. Rotko, A.N. Wiercińska, Bismuth particles Nafion covered boron-doped diamond electrode for simultaneous and individual voltammetric assays of paracetamol and caffeine. Sens. Actuators B Chem. 235, 263–272 (2016)

    Article  Google Scholar 

  38. A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sens. Actuators B Chem. 203, 909–918 (2014)

    Article  Google Scholar 

  39. L. Li, T. Zhou, G. Sun, Z. Lia, W. Yang, J. Jia, G. Yang, Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose. Electrochim. Acta 152, 31–37 (2015)

    Article  Google Scholar 

  40. A.R. Khaskheli, J. Fischer, J. Barek, V. Vyskocil, M.I.Bhanger Sirajuddin, Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite–polystyrene composite film modified electrode. Electrochim. Acta 101, 238–242 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Science and Technology, Government of India for sanction of Fast Track Research Project for Young Scientists to Dr. Prashant K. Sharma (Ref. No.: SR/FTP/PS-157/2011) and Dr. Rashmi Madhuri (Ref. No.: SB/FT/CS-155/2012). Dr. Sharma (FRS/34/2012-2013/APH) and Dr. Madhuri (FRS/43/2013-2014/AC) are also thankful to Indian Institute of Technology (ISM), Dhanbad for grant of Major Research Project under Faculty Research Scheme. We are also thankful to Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India for a major research project (Sanction No. 34/14/21/2014-BRNS/0295). Authors also sincerely acknowledge the facilities available in Central Research Facility of the Institute. Shrabani and Manisha are also thankful to Indian Institute of Technology (ISM), Dhanbad for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Kumari, M., Madhuri, R. et al. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures. Appl. Phys. A 123, 494 (2017). https://doi.org/10.1007/s00339-017-1107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1107-y

Navigation