Skip to main content
Log in

Perforated ZnFe2O4/ZnO hybrid nanosheets: enhanced charge-carrier lifetime, photocatalysis, and bacteria inactivation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Perforated ZnFe2O4/ZnO hybrid nanosheets have been synthesized by hydrothermal technique and characterized using X-ray diffractometry, Raman spectroscopy, selected area electron diffractogram, and high-resolution scanning and transmission electron microscopic techniques. Energy dispersive X-ray spectrum shows the mole percentage of ZnFe2O4 in the synthesized nanohybrid as 2.3. The magnetization curve indicates the superparamagnetic character of the synthesized hybrid nanosheets. Electron-transfer resistance of ZnFe2O4/ZnO is larger than that of ZnO nanosheets. The absorption edge of the hybrid nanosheets overlaps with that of ZnO nanosheets and the direct and also indirect bandgaps of the hybrid do not differ significantly from those of ZnO. The emission spectrum of the hybrid overlaps with that of ZnO nanosheets. The charge-carrier lifetime in the hybrid is longer than that in ZnO nanosheets. The hybrid nanosheets show larger photocatalytic activity compared to ZnO nanosheets. The bactericidal activity of the hybrid is also larger than that of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. E.S. Jang, J.-H. Won, S.-J. Hwang, J.-H. Choy, Adv. Mater. 18, 3309 (2006)

    Article  Google Scholar 

  3. Z. Xing, B. Geng, X. Li, H. Jiang, C. Feng, T. Ge, CrystEngComm 13, 2137 (2011)

    Article  Google Scholar 

  4. X. Wang, Q. Zhang, Q. Wan, G. Dai, C. Zhou, B. Zou, J. Phys. Chem. C 115, 2769 (2011)

    Article  Google Scholar 

  5. H.W. Jeong, S.-Y. Choi, S.H. Hong, S.K. Lim, D.S. Han, A. Abdel-Wahab, H. Park, J. Phys. Chem. C 118, 21331 (2014)

    Article  Google Scholar 

  6. H. Faber, M. Klaumunzer, M. Voigt, D. Galli, B.F. Vieweg, W. Peukert, E. Spiecker, M. Halik, Nanoscale 3, 897 (2011)

    Article  ADS  Google Scholar 

  7. S.C. Pillai, J.M. Kelly, R. Ramesh, D.E. McCormack, J. Mater. Chem. C 1, 3268 (2013)

    Article  Google Scholar 

  8. D. Vanmaekelbergh, L.K. van Vagt, Nanoscale 3, 2783 (2011)

    Article  ADS  Google Scholar 

  9. B. Fang, C. Zhang, G. Wang, M. Wang, Y. Ji, Sens. Actuators B 155, 304 (2011)

    Article  Google Scholar 

  10. Y. Zhang, Z. Kang, X. Yan, Q. Liao, Sci. China Mater. 58, 60 (2015)

    Article  Google Scholar 

  11. B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R.D. Miguel, L. Bergstrom, Sci. Technol. Adv. Mater. 14, 023001 (2013)

    Article  Google Scholar 

  12. S.G. Kumar, K.S.R. Koteswara Rao, RSC Adv. 5, 3306 (2015)

    Article  Google Scholar 

  13. M. Raula, MdH Rashid, T.K. Paira, E. Dinda, T.K. Mandal, Langmuir 26, 8769 (2010)

    Article  Google Scholar 

  14. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7, 219 (2015)

    Article  Google Scholar 

  15. R. Marschall, Adv. Funct. Mater. 24, 2421 (2014)

    Article  Google Scholar 

  16. M.A. Valenzuela, P. Bosch, J. Jimenez-Becerrill, O. Quiroz, A.I. Paez, J. Photochem. Photobiol. A 148, 177 (2002)

    Article  Google Scholar 

  17. H.-S. Qian, Y. Hu, Z.-Q. Li, X.-Y. Yang, L.-C. Li, X.-T. Zhang, R. Xu, J. Phys. Chem. C 114, 17455 (2010)

    Article  Google Scholar 

  18. K. Arshak, I. Gaidan, Sens. Actuators B 111–112, 58 (2005)

    Article  Google Scholar 

  19. G. Tong, F. Du, W. Wu, R. Wu, F. Liu, Y. Liang, J. Mater. Chem. B 1, 2647 (2013)

    Article  Google Scholar 

  20. Y. Bu, Z. Chen, W. Li, Dalton Trans. 42, 16272 (2013)

    Article  Google Scholar 

  21. R. Rameshbabu, N. Kumar, A. Karthigeyan, B. Neppolian, Mater. Chem. Phys. 181, 106 (2016)

    Article  Google Scholar 

  22. D. Sibera, J. Kaszewski, D. Moszynski, E. Borowiak-Palen, W. Lojkowski, U. Narkiewicz, Phys. Status Solidi C 7, 1420 (2010)

    Article  ADS  Google Scholar 

  23. M. Rabbani, M. Heidari-Golafzani, R. Rahimi, Mater. Chem. Phys. 179, 35 (2016)

    Article  Google Scholar 

  24. R. Rahimi, M. Heidari-Golafzani, M. Rabbani, Superlattices Microstruct. 85, 497 (2015)

    Article  ADS  Google Scholar 

  25. M.C.H. McKubre, D.D. Macdonald, in Impedance Spectroscopy. Theory, Experiment, and Applications, ed. by E. Barsoukov, J.R. Macdonald (Wiley, NJ, 2005)

  26. C. Karunakaran, P. Vinayagamoorthy, New J. Chem. 40, 1845 (2016)

    Article  Google Scholar 

  27. C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Langmuir 30, 15031 (2014)

    Article  Google Scholar 

  28. P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 11, 101 (2011)

    Article  ADS  Google Scholar 

  29. Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak, A.C. Basaran, B. Aktas, J. Alloys Compds. 462, 209 (2008)

    Article  Google Scholar 

  30. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Alloys Compds. 509, 3917 (2011)

    Article  Google Scholar 

  31. Z.P. Chen, W.Q. Fang, B. Zhang, H.G. Yang, J. Alloys Compds. 550, 348 (2013)

    Article  Google Scholar 

  32. X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, G. Chen, Chemosphere 82, 581 (2011)

    Article  Google Scholar 

  33. X. Xu, A.K. Azad, J.T.S. Irvine, Catal. Today 199, 22 (2013)

    Article  Google Scholar 

  34. J.S. Jang, P.H. Borse, J.S. Lee, O.-S. Jung, C.-R. Cho, E.D. Jeong, M.G. Ha, M.S. Won, H.G. Kim, Bull. Korean Chem. Soc. 30, 1738 (2009)

    Article  Google Scholar 

  35. J.S. Jang, S.J. Hong, J.S. Lee, J. Korean Phys. Soc. 54, 204 (2009)

    Article  ADS  Google Scholar 

  36. P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, R. Sasikala, Appl. Catal. B 107, 333 (2011)

    Article  Google Scholar 

  37. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Appl. Energy 87, 2230 (2010)

    Article  Google Scholar 

  38. J. Becker, K.R. Raghupathi, J. St. Pierre, D. Zhao, R.T. Koodali, J. Phys. Chem. C 115, 13844 (2011)

    Article  Google Scholar 

  39. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Solar Energy Mater. Solar Cells 90, 1773 (2006)

    Article  Google Scholar 

  40. R. Mariappan, V. Ponnuswamy, P. Suresh, Superlattices Microstruct. 52, 500 (2012)

    Article  ADS  Google Scholar 

  41. S.W. Jung, W.I. Park, H.D. Cheong, G.-C. Yi, H.M. Jang, Appl. Phys. Lett. 80, 1924 (2002)

    Article  ADS  Google Scholar 

  42. A. Layek, B. Manna, A. Chowdhury, Chem. Phys. Lett. 539–540, 133 (2012)

    Article  Google Scholar 

  43. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D. Dionysiou, J. Phys. Chem. Lett. 5, 2543 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi for the research funding (SR/S1/PC-41/2011). Furthermore, Prof. C. Karunakaran thanks the Council of Scientific of Industrial Research (CSIR), New Delhi for the Emeritus Scientist Scheme 21(0887)/12/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Karunakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunakaran, C., Vinayagamoorthy, P. Perforated ZnFe2O4/ZnO hybrid nanosheets: enhanced charge-carrier lifetime, photocatalysis, and bacteria inactivation. Appl. Phys. A 123, 472 (2017). https://doi.org/10.1007/s00339-017-1086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1086-z

Navigation