Skip to main content
Log in

Preparation and microwave absorbing properties of graphene oxides/ferrite composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The graphene oxides (GO) and the graphene-based composites have been synthesized successfully by Hummer method and Hydrothermal-calcination process, respectively. The effects of solvent (water, ethylene glycol, glycerol and glycol–glycerol), the consumption of graphite oxides (GO = 0.1, 0.5, 1.0, 2.0 wt%) on the crystallization, morphology and performance of the target samples have been investigated. The obtained samples have been characterized by FTIR, XRD, SEM and HRTEM. The precursors obtained through hydrothermal process are composed of 80 nm ferromagnetic polyhedral particles and the uniformly distributed covering GO layers. After calcination, the 200 nm ferromagnetic nanoparticles can be achieved on the surface of graphene films. The results indicate that the optimized samples can be obtained at GO = 0.1 wt% under water system. Also, the electromagnetic properties and microwave absorbing performance have been measured by VNA. The addition of GO is conducive to improve the absorbing property of ferrites by shifting the reflectivity peak into lower frequency range and sharping the maximum value. At GO = 0.1%, the maximum RL peaks can reach −17.15 dB at 3.3 GHz, with the bandwidth below −10 dB ranging from 2.8 to 3.8 GHz under 3 mm thickness. For GO = 1.0 wt%, twin peaks appear at 4.3 and 15.6 GHz of 3.5 mm thickness, and the bandwidth below −10 dB reaches 2.6 GHz (10.3–12.9 GHz) at 1.5 mm thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Peplow, Nat. News. (2006). doi:10.1038/news060320-6

    Google Scholar 

  2. T. Auld, M.P. McHenry, J. Whale, Renew. Energy 55, 24 (2013)

    Article  Google Scholar 

  3. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  4. X.H. Gong, H.Y. Tan, H.D. Meng, J.M. Guo, Signal Proc. 100, 186 (2014)

    Article  Google Scholar 

  5. A. Wise, M. Tur, A. Zadok, Opt. Express 19, 21945 (2011)

    Article  ADS  Google Scholar 

  6. Z.G. Sun, X.J. Qiao, X. Wan, Q.G. Ren, W.C. Li, S.Z. Zhang, X.D. Guo, Appl. Phys. A 122, 87 (2016)

    Article  ADS  Google Scholar 

  7. T. Wang, H.D. Wang, X. Chi, R. Li, J.B. Wang, Carbon 74, 312 (2014)

    Article  Google Scholar 

  8. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  9. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)

    Article  Google Scholar 

  10. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  11. P. Bhattacharya, C.K. Das, J. Mater. Sci-Mater. El. 24, 1927 (2013)

    Article  Google Scholar 

  12. Y.N. Tang, Z.Y. Liu, Z.G. Shen, W.G. Chen, D.W. Ma, X.Q. Dai, Sens. Actuators B 238, 182 (2017)

    Article  Google Scholar 

  13. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326 (2012)

    Article  ADS  Google Scholar 

  14. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4, 380 (2010)

    Article  Google Scholar 

  15. Q. Wan, M.Y. Liu, Y.L. Xie, J.W. Tian, Q. Huang, F.J. Deng, L.C. Mao, Q.S. Zhang, X.Y. Zhang, Y. Wei, J. Mater. Sci. 52, 504 (2017)

    Article  ADS  Google Scholar 

  16. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  17. D. Kuang, W.B. Hu, J. Inorg. Mater. 28, 235 (2013)

    Article  Google Scholar 

  18. X.Y. Wu, S.M. Li, J.H. Liu, M. Yu, B. Wang, J. Inorg. Mater. 29, 845 (2014)

    Article  Google Scholar 

  19. X. Huang, X.Y. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)

    Article  Google Scholar 

  20. H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall, S.I. Al-Resayes, A.A. El-Azhary, J. Mater. Chem. 19, 3832 (2009)

    Article  Google Scholar 

  21. D.P. Sun, Q. Zou, G.Q. Qian, C. Sun, W. Jiang, F.S. Li, Acta Mater. 61, 5829 (2013)

    Article  Google Scholar 

  22. S. Ameer, I.H. Gul, M. Mujahid, J. Alloy. Compd. 642, 78 (2015)

    Article  Google Scholar 

  23. Y. Wang, W.Z. Zhang, C.Y. Luo, X.M. Wu, Q.G. Wang, W.X. Chen, J.H. Li, Ceram. Int. 42, 17374 (2016)

    Article  Google Scholar 

  24. Y. Wang, X.M. Wu, W.Z. Zhang, S. Huang, J. Magn. Magn. Mater. 404, 58 (2016)

    Article  ADS  Google Scholar 

  25. H.P. Cong, J.J. He, Y. Lu, S.H. Yu, Small 6, 169 (2010)

    Article  Google Scholar 

  26. N. Tombros, A. Veligura, J. Junesch, M.H.D. Guimaraes, I.J. Vera-Marun, H.T. Jonkman, B.J. van Wees, Nat. Phys. 7, 697 (2011)

    Article  Google Scholar 

  27. H.L. Xu, H. Bi, R.B. Yang, J. Appl. Phys. 111, 552 (2012)

    Google Scholar 

  28. W.C. Li, X.J. Qiao, Q.Y. Zheng, T.L. Zhang, J. Alloy. Compd. 509, 6206 (2011)

    Article  Google Scholar 

  29. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Carbon 50, 2202 (2012)

    Article  Google Scholar 

  30. S. Afghahi, A. Shokuhfar, J. Magn. Magn. Mater. 370, 37 (2014)

    Article  ADS  Google Scholar 

  31. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  Google Scholar 

  32. S.F. Pei, H.M. Cheng, Carbon 50, 3210 (2012)

    Article  Google Scholar 

  33. X.C. Zhao, Z.M. Zhang, L.Y. Wang, K. Xi, Q.Q. Cao, D.H. Wang, Y. Yang, Y.W. Du, Sci. Rep. 3, 3421 (2013)

    Article  ADS  Google Scholar 

  34. D. Hisada, Y. Fujiwara, H. Sato, M. Jimbo, T. Kobayashi, K. Hata, J. Magn. Magn. Mater. 323, 3184 (2011)

    Article  ADS  Google Scholar 

  35. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)

    Article  ADS  Google Scholar 

  36. X.G. Liu, Z.Q. Ou, D.Y. Geng, Z. Han, J.J. Jiang, W. Liu, Z.D. Zhang, Carbon 48, 891 (2010)

    Article  Google Scholar 

  37. R. Simon, R.W. John, V.D. Theodore, Int. J. Electron. 21, 6 (1966)

    Google Scholar 

  38. C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, J.Y. Wang, X.H. Wang, Appl. Phys. Lett. 98, 7 (2011)

    Google Scholar 

  39. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Phys. Rev. Lett. 101, 026803 (2008)

    Article  ADS  Google Scholar 

  40. K. Pi, K.M. McCreary, W. Bao, W. Han, Y.F. Chiang, Y. Li, S.W. Tsai, C.N. Lau, R.K. Kawakami, Phys. Rev. B 80, 7 (2009)

    Article  Google Scholar 

  41. T. Sameshima, H. Hayasaka, T. Haba, Jpn. J. Appl. Phys. 48, 2 (2009)

    Article  Google Scholar 

  42. X.D. Guo, X.J. Qiao, Q.G. Ren, X. Wan, W.C. Li, Z.G. Sun, Appl. Phys. A 120, 43 (2015)

    Article  ADS  Google Scholar 

  43. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the School of Mechatronical Engineering, Beijing Institute of Technology for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jing Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Qiao, XJ., Sun, ZG. et al. Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123, 445 (2017). https://doi.org/10.1007/s00339-017-1059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1059-2

Navigation