Skip to main content
Log in

Investigation on microwave absorption capacity of nanocomposites based on metal oxides and graphene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene and its nanocomposites were prepared via solution mixing process. Graphene based polymer nanocomposites were prepared by two step process. Firstly, graphene/poly(3-methyl thiophene)(PMT)/BaTiO3 nanocomposite was prepared by in situ chemical oxidation polymerization technique. In the second step these nanocomposites were dispersed in thermoplastic polyurethane (TPU) matrix by solution blending process. All the four nanocomposites in TPU [30 % modified graphene (P1), 30 % Poly(3-methyl thiophene) (P2), 30 % graphene/PMT/BaTiO3 (P3) and 15 % graphene/PMT/BaTiO3 + 15 % Fe3O4 (P4)] were analyzed by different analytical techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Microwave absorbing property was measured by Agilent vector network analyzer (ENA E5071C) in the X-band region (8–12 GHz). Microwave absorption result was interpreted with the help of complex permittivity and permeability of the prepared materials. Matching of both dielectric loss and magnetic loss is essential for an effective radar absorbing material (RAM). P1, P2, P3 and P4 showed the maximum return loss of −14.37, −9.3, −30.02 and −47.59 dB respectively. Thermal stability of the RAMs was determined by the help of thermogravimetric analysis (TGA) instrument. Among the all, P4 showed better thermal property. All results support their use as RAM in different field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Zhou, W. Zhou, J. Su, F. Luo, D. Zhu, Y. Dong, Appl. Surf. Sci. 258, 2691–2696 (2012)

    Article  CAS  Google Scholar 

  2. J.M. Zhao, W.X. An, D.A. Li, X. Yang, Syn. Met. 161, 2144–2148 (2011)

    Article  CAS  Google Scholar 

  3. Y. Lu, Q. Liang, L. Xue, Appl. Surf. Sci. 258, 4782–4787 (2012)

    Article  CAS  Google Scholar 

  4. X. Chen, G. Wang, Y. Duan, S. Liu, J. Appl. Phys. 40, 1827–1830 (2007)

    CAS  Google Scholar 

  5. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater. 281, 195–205 (2004)

    Article  CAS  Google Scholar 

  6. Z.G. Fan, G.H. Luo, Z.G. Zhang, L. Zhou, F. Wei, Mat. Sci. Eng. B-SOLID. 132, 85–89 (2006)

    Article  CAS  Google Scholar 

  7. J.L. Wojkiewicz, S. Fauveaux, J.L. Miane, Syn. Met. 135, 127–128 (2003)

    Article  Google Scholar 

  8. M.A. Soto-Oviedo, O.A. Arau jo, R. Faez, M.C. Rezende, M.A. De Paoli, Syn. Met. 156, 1249–1255 (2006)

    Article  CAS  Google Scholar 

  9. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)

    Article  CAS  Google Scholar 

  10. R. Hao, W. Qian, L.H. Zhang, Y.L. Hou, Chem. Commun. 48, 6576–6578 (2008)

    Article  Google Scholar 

  11. Z. Ma, C. Cao, J. Yuan, Q. Liu, J. Wang, Appl. Surf. Sci. 258, 7556–7561 (2012)

    Article  CAS  Google Scholar 

  12. X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673–11677 (2011)

    Article  CAS  Google Scholar 

  13. M. Zhanga, H. Zhangb, G. Zengc, Adv. Mat. Res. 194, 520–523 (2011)

    Article  Google Scholar 

  14. A. Saib, L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.M. Thomassin, C. Pagnoulle, C. Detrembleur, R. Jerome, I. Huynen, IEEE. T. Micro. Theory 54, 2745–2754 (2006)

    Article  CAS  Google Scholar 

  15. L.J. Deng, M.G. Han, Appl. Phys. Lett. 91, 023119-1 (2007)

    Google Scholar 

  16. R.T. Lv, A.Y. Cao, F.Y. Kang, W.X. Wang, J.Q. Wei, J.L. Gu, K.L. Wang, D.H. Wu, J. Phys. Chem. C 111, 11475–11479 (2007)

    Article  CAS  Google Scholar 

  17. Y. Li, Y. Huang, S. Qi, L. Niu, Y. Zhang, Y. Wu, Appl. Surf. Sci. 258, 3659–3666 (2012)

    Article  CAS  Google Scholar 

  18. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, Appl. Phys. Lett. 98, 072906-1 (2011)

    Google Scholar 

  19. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47, 922 (2009)

    Article  CAS  Google Scholar 

  20. Y. Zhan, F. Meng, X. Yang, R. Zhao, X. Liu, Mater. Sci. Eng. B-Adv. 176, 1333–1339 (2011)

    Article  CAS  Google Scholar 

  21. W. Zhou, X. Hu, X. Bai, S. Zhou, C. Sun, J. Yan, P. Chen, ACS Appl. Mater. Interfaces 3, 3839–3845 (2011)

    Article  CAS  Google Scholar 

  22. S. Ni, X. Wang, G. Zhou, F. Yang, J. Wang, D.J. He, J. Alloys, Compound 489, 252–256 (2010)

    Article  CAS  Google Scholar 

  23. S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, D.Y. He, J. Phys. D Appl. Phys. 42, 055004 (2009)

    Article  Google Scholar 

  24. A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, J. Power Sour. 80, 142–148 (1999)

    Article  CAS  Google Scholar 

  25. M. Mastragostino, C. Arbizzani, F. Sovai, J. Power Sour. 97–98, 812–815 (2001)

    Article  Google Scholar 

  26. S. Das, A. Mandal, C.K. Das, Nano Trends: J. Nanotechnol. Appl. 11, 01–07 (2011)

    Article  CAS  Google Scholar 

  27. C.K. Das, A. Mandal, J. Mater. Sci. Res. 1, 45–53 (2012)

    CAS  Google Scholar 

  28. W. Qian, Z. Chen, M. Eastman, S. Cottingham, B. Manhat, A. Goforth, J. Jiao, Ultramicroscopy. (2011). doi:10.1016/j.ultramic.2011.11.010

  29. J. Deng, Y. Peng, C. He, X. Long, P. Li, A.S.C. Chan, Polym. Int. 52, 1182–1187 (2003)

    Article  CAS  Google Scholar 

  30. Y.R. Gang, J. Magn. Magn. Mater. 323, 1805–1810 (2011)

    Article  Google Scholar 

  31. E. Michielssen, J. Sajer, S. Ranjithan, R. Mittra, IEEE. T. Micro. Theory 41, 1024–1030 (1993)

    Article  CAS  Google Scholar 

  32. D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70, 400 (2010)

    Article  CAS  Google Scholar 

  33. X.Y. Fang, M.S. Cao, X.L. Shi, Z.L. Hou, W.L. Song, J. Yuan, J. Appl. Phys. 107, 054304 (2010)

    Article  Google Scholar 

  34. Y.J. Chen, M.S. Cao, T.H. Wang, Q. Wan, Appl. Phys. Lett. 84, 3367–3370 (2004)

    Article  CAS  Google Scholar 

  35. D.L. Zhao, X. Li, Z.M. Shen, Mater. Sci. Eng. B-Adv. 150, 105 (2008)

    Article  CAS  Google Scholar 

  36. A.L. Paula, M.C. Rezende, J.J. Barroso, J. Aeros, Technol. Mange. 3, 59–64 (2011)

    Google Scholar 

  37. V. Raja, A.K. Sharma, V.V.R. Narasimha, Mater. Lett. 58, 3242–3247 (2004)

    Article  CAS  Google Scholar 

  38. A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, ACS Appl. Mater. Interface 2, 927–933 (2010)

    Article  CAS  Google Scholar 

  39. A. Gupta, V. Choudhary, Compos. Sci. Technol. 71, 1563–1568 (2011)

    Article  CAS  Google Scholar 

  40. Y.F. Zhua, L. Zhangb, T. Natsukic, Y.Q. Fud, Q.Q. Ni, Syn. Met. 162, 337–343 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CSIR, New Delhi, INDIA for their financial support in this work. Authors are also thankful to IIT Kharagpur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chapal Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, P., Das, C.K. Investigation on microwave absorption capacity of nanocomposites based on metal oxides and graphene. J Mater Sci: Mater Electron 24, 1927–1936 (2013). https://doi.org/10.1007/s10854-012-1036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-1036-7

Keywords

Navigation