Skip to main content
Log in

Electrical and optical properties of lanthanum oxide-based films prepared by electron beam evaporation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lanthanum oxide-based films were deposited on n-Si and quartz substrates using e-beam evaporation method. The XRD patterns demonstrated mixed structure consisting of La2O3 and La(OH)3 phases (referred as La2O3–OH). Optical and electrical properties of La2O3–OH films, as well as the effects of the annealing and storage conditions on these properties are described here. It is observed that conductance–voltage characteristics of Al/La2O3–OH/n-Si devices along with current rectification show negative differential conductance as a result of water molecule redox reaction on the film surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.-H. Hsu, M.-T. Wang, J. Ya-Min Lee, Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with La2O3 gate dielectric. J. Appl. Phys. 100, 074108 (2006)

    Article  ADS  Google Scholar 

  2. K. Xiong, J. Robertson, Oxygen vacancies in high dielectric constant oxides La2O3, Lu2O3, and LaLuO3. Appl. Phys. Lett. 95, 022903 (2009)

    Article  ADS  Google Scholar 

  3. L. Qi-Ya, F. Ze-Bo, J. Ting, L. Shi-Yan, T. Yong-Sheng, C. Jia-Jun, Z. Yan-Yan, Band alignment and band gap characterization of La2O3 films on Si substrates grown by radio frequency magnetron sputtering. Chin. Phys. Lett. 31, 027702 (2014)

    Article  ADS  Google Scholar 

  4. Y. Wang, R. Jia, C. Li, Y. Zhang, Electric properties of La2O3/SiO2/4H-SiC MOS capacitors with different annealing temperatures. AIP Adv. 5, 087166 (2015)

    Article  ADS  Google Scholar 

  5. M. Gutowski, J.E. Jaffe, C.-L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, P.J. Tobin, Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Appl. Phys. Lett. 80, 1897 (2002)

    Article  ADS  Google Scholar 

  6. C. Yang, H. Fan, Sh Qiu, Y. Xi, Y. Fu, Optical and electrical properties of La2O3 films prepared by ion beam assistant electron beam evaporation. Surf. Rev. Lett. 15, 271 (2008)

    Article  Google Scholar 

  7. J.B. Chen, A.D. Li, Q.Y. Shao, H.Q. Ling, D. Wu, Y. Wang, Y.J. Bao, M. Wang, Z.G. Liu, N.B. Ming, Growth and characteristics of La2O3 gate dielectric prepared by low pressure metalorganic chemical vapor deposition. Appl. Surf. Sci. 233, 91–98 (2004)

    Article  ADS  Google Scholar 

  8. A. Igityan, Y. Kafadaryan, N. Aghamalyan, S. Petrosyan, G. Badalyan, R. Hovepyan, I. Gambaryan, A. Eganyan, H. Smerjian, A. Kuzanyan, Structural and electrical characteristics of lanthanum oxide formed on surface of LaB6 film by annealing. Thin Solid Films 564, 415–418 (2014)

    Article  ADS  Google Scholar 

  9. S.Y. Wang, W. Wang, Y.T. Qian, Preparation of La2O3 thin films by pulse ultrasonic spray pyrolysis method. Thin Solid Films 372, 50–53 (2000)

    Article  ADS  Google Scholar 

  10. C. Yang, H. Fan, Sh Qiu, Y. Xi, Y. Fu, Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation. J Non Cryst Solids 355, 33–37 (2009)

    Article  ADS  Google Scholar 

  11. L. Esaki, New phenomenon in narrow germanium p−n junctions. Phys. Rev. 109, 603 (1958)

    Article  ADS  Google Scholar 

  12. G. Adachi, N. Imanaka, The binary rare earth oxides. Chem. Rev. 98, 1479–1514 (1998)

    Article  Google Scholar 

  13. J.G. Kang, Y.I. Kim, D.W. Cho, Y. Sohn, Synthesis and physico-chemical properties of La(OH)3 and La2O3 nanostructures. Mater. Sci. in Semicond. Process. 40, 737–743 (2015)

    Article  Google Scholar 

  14. A.Š. Vuk, R. Ješe, B. Orel, G. Dražic, The effect of surface hydroxyl groups on the adsorption properties of nanocrystalline TiO2 films. IJP 7, 163–168 (2005)

    Google Scholar 

  15. S. Bernal, F.J. Botana, R. Garcia, J.M. Rodriguez-Izquierdo, Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water. React. Solids 4, 23–40 (1987)

    Article  Google Scholar 

  16. Yi Zhao, Design of higher-k and more stable rare earth oxides as gate dielectrics for advanced CMOS devices. Materials 5, 1413–1438 (2012)

    Article  ADS  Google Scholar 

  17. M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, A.E. Gunnæs, XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron Spectrosc. Relat. Phenom. 184, 399–409 (2011)

    Article  Google Scholar 

  18. F. Dong, X. Xiao, G. Jiang, Y. Zhang, W. Cui, J. Ma, Surface oxygen-vacancy induced photocatalytic activity of La(OH)3 nanorods prepared by a fast and scalable method. Phys. Chem. Chem. Phys. 17, 16058–16066 (2015)

    Article  Google Scholar 

  19. A.M. Prokofiev, A.I. Shelykh, B.T. Melekh, Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series. J. Alloys Compd. 242, 41–44 (1996)

    Article  Google Scholar 

  20. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  21. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Large On-Off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  22. N.A. Zimbovskaya, M.R. Pederson, Negative differential resistance in molecular junctions: effect of the electronic structure of the electrodes. Phys. Rev. B 78, 153105 (2008)

    Article  ADS  Google Scholar 

  23. Q. Tang, H.K. Moon, Y. Lee, S.M. Yoon, H.J. Song, H. Lim, H.C. Choi, Redox-mediated negative differential resistance behavior from metalloproteins connected through carbon nanotube nanogap electrodes. J. Am. Chem. Soc. 129, 11018–11019 (2007)

    Article  Google Scholar 

  24. H.-K. Lee, M.H.-C. Jin, Negative differential resistance in hydrated deoxyribonucleic acid thin films mediated by diffusion-limited water redox reactions. Appl. Phys. Lett. 97, 013306 (2010)

    Article  ADS  Google Scholar 

  25. D. Joung, L. Anjia, H. Matsui, S.I. Khondaker, Negative differential resistance in ZnO coated peptide nanotube. Appl. Phys. A Mater. Sci. Process. 112, 305–310 (2013)

    Article  ADS  Google Scholar 

  26. H.-K. Lee, M.H.-C. Jina, Negative differential resistance in hydrated deoxyribonucleic acid thin films mediated by diffusion-limited water redox reactions. Appl. Phys. Lett. 97, 135 (2010)

    Google Scholar 

  27. S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., USA, 1969), pp. 492–504

Download references

Acknowledgements

The authors gratefully acknowledge support for this work by Armenian National Science and Education fund grant program, ANSEF (Grant No. 3913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgenia Kafadaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igityan, A., Aghamalyan, N., Petrosyan, S. et al. Electrical and optical properties of lanthanum oxide-based films prepared by electron beam evaporation. Appl. Phys. A 123, 448 (2017). https://doi.org/10.1007/s00339-017-1057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1057-4

Navigation