Skip to main content
Log in

Negative differential resistance in ZnO coated peptide nanotube

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the room temperature electronic transport properties of a zinc oxide (ZnO) coated peptide nanotube contacted with Au electrodes. Current–voltage (IV) characteristics show asymmetric negative differential resistance (NDR) behavior along with current rectification. The NDR phenomenon is observed in both negative and positive voltage sweep scans, and found to be dependent on the scan rate and humidity. Our results suggest that the NDR is due to protonic conduction arising from water molecule redox reaction on the surface of ZnO coated peptide nanotubes rather than the conventional resonant tunneling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Esaki, Phys. Rev. 109, 603 (1958)

    Article  ADS  Google Scholar 

  2. T. Sollner, W. Goodhue, P. Tannenwald, C. Parker, D. Peck, Appl. Phys. Lett. 43, 588 (1983)

    Article  ADS  Google Scholar 

  3. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  4. J. He, S.M. Lindsay, J. Am. Chem. Soc. 127, 11932–11933 (2005)

    Article  Google Scholar 

  5. Q. Tang, H.K. Moon, Y. Lee, S.M. Yoon, H.J. Song, H. Lim, H.C. Choi, J. Am. Chem. Soc. 129, 11018–11019 (2007)

    Article  Google Scholar 

  6. Y. Yang, J. Qi, Q. Liao, W. Guo, Y. Wang, Y. Zhang, Appl. Phys. Lett. 95, 123112 (2009)

    Article  ADS  Google Scholar 

  7. P. Jangjian, T. Liu, M. Li, M. Tsai, C. Chang, Appl. Phys. Lett. 94, 043105 (2009)

    Article  ADS  Google Scholar 

  8. R. de la Rica, C. Pejoux, H. Matsui, Adv. Funct. Mater. 21, 1018–1026 (2011)

    Article  Google Scholar 

  9. S. Zhang, Nat. Biotechnol. 21, 1171–1178 (2003)

    Article  Google Scholar 

  10. X. Gao, H. Matsui, Adv. Mater. 17, 2037–2050 (2005)

    Article  Google Scholar 

  11. C.L. Chen, N.L. Rosi, Angew. Chem., Int. Ed. Engl. 49, 1924–1942 (2010)

    Article  Google Scholar 

  12. Y.S. Nam, A.P. Magyar, D. Lee, J.W. Kim, D.S. Yun, H. Park, T.S. Pollom, D.A. Weitz, A.M. Belcher, Nat. Nanotechnol. 5, 340–344 (2010)

    Article  ADS  Google Scholar 

  13. X. Dang, H. Yi, M.H. Ham, J. Qi, D.S. Yun, R. Ladewski, M.S. Strano, P.T. Hammond, A.M. Belcher, Nat. Nanotechnol. 6, 377–384 (2011)

    Article  ADS  Google Scholar 

  14. K.T. Nam, D.W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher, Science 312, 885–888 (2006)

    Article  ADS  Google Scholar 

  15. R.J. Tseng, C. Tsai, L. Ma, J. Ouyang, C.S. Ozkan, Y. Yang, Nat. Nanotechnol. 1, 72–77 (2006)

    Article  ADS  Google Scholar 

  16. H. Tang, L. Chen, C. Xing, Y.-G. Guo, S. Wang, Macromol. Rapid Commun. 31, 1892–1896 (2010)

    Article  Google Scholar 

  17. Y.C. Hung, W.T. Hsu, T.Y. Lin, L. Fruk, Appl. Phys. Lett. 99, 253301-3 (2011)

    ADS  Google Scholar 

  18. T. Shan, M. Chuanbin, L. Yueran, Q.K. David, K.B. Sanjay, IEEE Trans. Electron Devices 54, 433–438 (2007)

    Article  Google Scholar 

  19. S. Shekhar, L. Anjia, H. Matsui, S.I. Khondaker, Nanotechnology 22, 095202 (2011)

    Article  ADS  Google Scholar 

  20. H. Matsui, B. Gologan, J. Phys. Chem. B 104, 3383–3386 (2000)

    Article  Google Scholar 

  21. M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai, T. Adschiri, Adv. Mater. 17, 2571–2575 (2005)

    Article  Google Scholar 

  22. A. van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715–1723 (2000)

    Article  Google Scholar 

  23. O.L. Stroyuk, V.M. Dzhagan, V.V. Shvalagin, S.Ya. Kuchmiy, J. Phys. Chem. C 114, 220–225 (2010)

    Article  Google Scholar 

  24. H.M. Zhang, G.X. Chen, G.W. Yang, J.W. Zhang, X.Y. Lu, J. Mater. Sci., Mater. Electron. 18, 381–384 (2007)

    Article  Google Scholar 

  25. Y. Zhang, C.T. Lee, Nanoscale Res. Lett. 5, 1492–1495 (2010)

    Article  ADS  Google Scholar 

  26. Y.T. Long, E. Abu-Irhayem, H.-B. Kraatz, Eur. J. Chem. 11, 5186–5194 (2005)

    Article  Google Scholar 

  27. D.M. Cardamone, G. Kirczenow, Nano Lett. 10, 1158–1162 (2010)

    Article  ADS  Google Scholar 

  28. X. Xiao, B. Xu, N. Tao, Angew. Chem., Int. Ed. Engl. 43, 6148–6152 (2004)

    Article  Google Scholar 

  29. L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593–595 (1974)

    Article  ADS  Google Scholar 

  30. T. Rakshit, G.-C. Liang, A.W. Ghosh, S. Datta, Nano Lett. 4, 1803–1807 (2004)

    Article  ADS  Google Scholar 

  31. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Nano Lett. 4, 55–59 (2003)

    Article  ADS  Google Scholar 

  32. N.P. Guisinger, N.L. Yoder, M.C. Hersam, Proc. Natl. Acad. Sci. USA 102, 8838–8843 (2005)

    Article  ADS  Google Scholar 

  33. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 77, 1224–1226 (2000)

    Article  ADS  Google Scholar 

  34. N.A. Zimbovskaya, M.R. Pederson, Phys. Rev. B 78, 153105 (2008)

    Article  ADS  Google Scholar 

  35. H. Lee, M.H. Jin, Appl. Phys. Lett. 97, 013306 (2010)

    Article  ADS  Google Scholar 

  36. M.E. Tuckerman, D. Marx, M. Parrinello, Nature 417, 925–929 (2002)

    Article  ADS  Google Scholar 

  37. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Appl. Surf. Sci. 242, 212–217 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work for the part of electronic fabrication and electric measurement were supported by the US National Science Foundation under grant ECCS 0823902 (HM) and 0823973 (SIK). The material synthesis and the structural analysis were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DEFG-02-01ER45935 (HM). The Hunter College infrastructure is supported by the National Institutes of Health, the RCMI program (G12-RR003037-245476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiful I. Khondaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joung, D., Anjia, L., Matsui, H. et al. Negative differential resistance in ZnO coated peptide nanotube. Appl. Phys. A 112, 305–310 (2013). https://doi.org/10.1007/s00339-013-7737-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7737-9

Keywords

Navigation