Skip to main content
Log in

Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spherical Ge nanoparticles with diameters of 20–80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Baricikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15, 3022 (2013)

    Article  Google Scholar 

  2. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  3. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  4. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  5. A.A. Ruth, J.A. Young, Colloids Surf. A Physicochem. Eng. Asp. 279, 121 (2006)

    Article  Google Scholar 

  6. H.S. Nalwa, Nanostructured materials and nanotechnology, Concise edn. (Academic Press, San Diego, 2002)

    Google Scholar 

  7. K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. Vitukhnovsky, Chem. Phys. Lett. 366, 357 (2002)

    Article  ADS  Google Scholar 

  8. R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Appl. Phys. B 80, 595 (2005)

    Article  ADS  Google Scholar 

  9. N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, Appl. Phys. A 94, 641 (2009)

    Article  ADS  Google Scholar 

  10. H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Angew. Chem. Int. Ed. 49, 6361 (2010)

    Article  Google Scholar 

  11. Y. Jiang, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Appl. Phys. A 105, 903 (2011)

    Article  ADS  Google Scholar 

  12. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, Opt. Mater. Exp. 2, 510 (2012)

    Article  Google Scholar 

  13. Y. Maeda, Phys. Rev. B 51, 1658 (1995)

    Article  ADS  Google Scholar 

  14. S. Sato, T. Ikeda, K. Hamada, K. Kimura, Solid State Commun. 149, 862 (2009)

    Article  ADS  Google Scholar 

  15. D.C. Lee, J.M. Pietryga, I. Robel, D.J. Werder, R.D. Schaller, V.I. Klimov, J. Am. Chem. Soc. 131, 3436 (2009)

    Article  Google Scholar 

  16. D.A. Ruddy, J.C. Johnson, E.R. Smith, N.R. Neale, ACS Nano 4, 7459 (2010)

    Article  Google Scholar 

  17. Z.C. Holman, U. Kortshagen, Phys. Status Solidi RRL 5, 110 (2011)

    Article  Google Scholar 

  18. S. Okamoto, Y. Kanemitsu, Phys. Rev. B 54, 16421 (1996)

    Article  ADS  Google Scholar 

  19. M. Zacharias, P.M. Fauchet, Appl. Phys. Lett. 71, 380 (1997)

    Article  ADS  Google Scholar 

  20. S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Phys. Rev. B 58, 7921 (1998)

    Article  ADS  Google Scholar 

  21. L.M. Wheeler, L.M. Levij, U.R. Kortshagen, J. Phys. Chem. Lett. 4, 3392 (2013)

    Article  Google Scholar 

  22. C.Y. Chien, W.T. Lai, Y.J. Chang, C.C. Wang, M.H. Kuo, P.W. Li, Nanoscale 6, 5303 (2014)

    Article  ADS  Google Scholar 

  23. S. Sun, Y. Sun, Z. Liu, D. Lee, S. Peterson, P. Pianetta, Appl. Phys. Lett. 88, 021903 (2006)

    Article  ADS  Google Scholar 

  24. J. Israelachivili, Intermolecular and surface forces, 2nd edn. (Academic Press, London, 1992)

    Google Scholar 

  25. V.A. Gavva, T.V. Kotereva, V.A. Lipskiy, A.V. Nezhdanov, Opt. Spectrosc. 120, 255 (2016)

    Article  ADS  Google Scholar 

  26. E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova, Appl. Phys. Rev. 1, 011302 (2014)

    Article  ADS  Google Scholar 

  27. J.F. Scott, Phys. Rev. B 1, 3488 (1970)

    Article  ADS  Google Scholar 

  28. M.F. Ehman, K. Vedam, W.B. White, J.W. Faust Jr., J. Mater. Sci. 6, 969 (1971)

    Article  ADS  Google Scholar 

  29. L.P. Lindeman, M.K. Wilson, Spectrochim. Acta 9, 47 (1957)

    Article  ADS  Google Scholar 

  30. R.J.H. Clark, C.J. Willis, Inorg. Chem. 10, 1118 (1970)

    Article  Google Scholar 

  31. I.R. Beattie, P.J. Jones, G. Reid, M. Webster, Inorg. Chem. 37, 6032 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Satoshi Fujita, Aisin Seiki Co. Ltd., and IMRA America, Inc. for allowing the use of the femtosecond laser and helpful technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Hamanaka.

Ethics declarations

Funding

This study received no funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamanaka, Y., Iwata, M. & Katsuno, J. Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl. Appl. Phys. A 123, 425 (2017). https://doi.org/10.1007/s00339-017-1044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1044-9

Keywords

Navigation