Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl

Abstract

Spherical Ge nanoparticles with diameters of 20–80 nm were fabricated by laser ablation of a Ge single crystal in water and in aqueous HCl using sub-picosecond laser pulses (1040 nm, 700 fs, 100 kHz, and a pulse energy of 10 µJ). We found that the as-synthesized nanoparticles suffered rapid oxidization followed by dissolution when laser ablation was conducted in pure water. In contrast, oxidation of Ge nanoparticles produced in dilute HCl and stored intact was minimal, and colloidal dispersions of the Ge nanoparticles remained stable up to 7 days. It was elucidated that dangling bonds on the surfaces of the Ge nanoparticles were terminated by Cl, which inhibited oxidation, and that such hydrophilic surfaces might improve the dispersibility of nanoparticles in aqueous solvent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S. Baricikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15, 3022 (2013)

    Article  Google Scholar 

  2. 2.

    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  3. 3.

    V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  4. 4.

    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  5. 5.

    A.A. Ruth, J.A. Young, Colloids Surf. A Physicochem. Eng. Asp. 279, 121 (2006)

    Article  Google Scholar 

  6. 6.

    H.S. Nalwa, Nanostructured materials and nanotechnology, Concise edn. (Academic Press, San Diego, 2002)

    Google Scholar 

  7. 7.

    K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. Vitukhnovsky, Chem. Phys. Lett. 366, 357 (2002)

    ADS  Article  Google Scholar 

  8. 8.

    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Appl. Phys. B 80, 595 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, Appl. Phys. A 94, 641 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    H. Wang, A. Pyatenko, K. Kawaguchi, X. Li, Z. Swiatkowska-Warkocka, N. Koshizaki, Angew. Chem. Int. Ed. 49, 6361 (2010)

    Article  Google Scholar 

  11. 11.

    Y. Jiang, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Appl. Phys. A 105, 903 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, Opt. Mater. Exp. 2, 510 (2012)

    Article  Google Scholar 

  13. 13.

    Y. Maeda, Phys. Rev. B 51, 1658 (1995)

    ADS  Article  Google Scholar 

  14. 14.

    S. Sato, T. Ikeda, K. Hamada, K. Kimura, Solid State Commun. 149, 862 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    D.C. Lee, J.M. Pietryga, I. Robel, D.J. Werder, R.D. Schaller, V.I. Klimov, J. Am. Chem. Soc. 131, 3436 (2009)

    Article  Google Scholar 

  16. 16.

    D.A. Ruddy, J.C. Johnson, E.R. Smith, N.R. Neale, ACS Nano 4, 7459 (2010)

    Article  Google Scholar 

  17. 17.

    Z.C. Holman, U. Kortshagen, Phys. Status Solidi RRL 5, 110 (2011)

    Article  Google Scholar 

  18. 18.

    S. Okamoto, Y. Kanemitsu, Phys. Rev. B 54, 16421 (1996)

    ADS  Article  Google Scholar 

  19. 19.

    M. Zacharias, P.M. Fauchet, Appl. Phys. Lett. 71, 380 (1997)

    ADS  Article  Google Scholar 

  20. 20.

    S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, Phys. Rev. B 58, 7921 (1998)

    ADS  Article  Google Scholar 

  21. 21.

    L.M. Wheeler, L.M. Levij, U.R. Kortshagen, J. Phys. Chem. Lett. 4, 3392 (2013)

    Article  Google Scholar 

  22. 22.

    C.Y. Chien, W.T. Lai, Y.J. Chang, C.C. Wang, M.H. Kuo, P.W. Li, Nanoscale 6, 5303 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    S. Sun, Y. Sun, Z. Liu, D. Lee, S. Peterson, P. Pianetta, Appl. Phys. Lett. 88, 021903 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    J. Israelachivili, Intermolecular and surface forces, 2nd edn. (Academic Press, London, 1992)

    Google Scholar 

  25. 25.

    V.A. Gavva, T.V. Kotereva, V.A. Lipskiy, A.V. Nezhdanov, Opt. Spectrosc. 120, 255 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova, Appl. Phys. Rev. 1, 011302 (2014)

    ADS  Article  Google Scholar 

  27. 27.

    J.F. Scott, Phys. Rev. B 1, 3488 (1970)

    ADS  Article  Google Scholar 

  28. 28.

    M.F. Ehman, K. Vedam, W.B. White, J.W. Faust Jr., J. Mater. Sci. 6, 969 (1971)

    ADS  Article  Google Scholar 

  29. 29.

    L.P. Lindeman, M.K. Wilson, Spectrochim. Acta 9, 47 (1957)

    ADS  Article  Google Scholar 

  30. 30.

    R.J.H. Clark, C.J. Willis, Inorg. Chem. 10, 1118 (1970)

    Article  Google Scholar 

  31. 31.

    I.R. Beattie, P.J. Jones, G. Reid, M. Webster, Inorg. Chem. 37, 6032 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Satoshi Fujita, Aisin Seiki Co. Ltd., and IMRA America, Inc. for allowing the use of the femtosecond laser and helpful technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasushi Hamanaka.

Ethics declarations

Funding

This study received no funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamanaka, Y., Iwata, M. & Katsuno, J. Fabrication of oxidation-resistant Ge colloidal nanoparticles by pulsed laser ablation in aqueous HCl. Appl. Phys. A 123, 425 (2017). https://doi.org/10.1007/s00339-017-1044-9

Download citation

Keywords

  • Laser Ablation
  • GeO2
  • Colloidal Suspension
  • Pulse Laser Ablation
  • Repulsion Potential