Skip to main content
Log in

Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78−x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V h), formation energy (E h) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Popescu, Disordered chalcogenide optoelectronic materials: phenomena and applications. J. Optoelectron. Adv. Mater. 7, 2189–2210 (2005)

    Google Scholar 

  2. P. Lucas, M. Riley, C. Boussard, B. Bureau, Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Bio. Chem. 351, 1–10 (2006)

    Google Scholar 

  3. P. Lucas, M.A. Solis, D. Le Coq, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard, B. Bureau, Spectroscopic properties of chalcogenide fibers for biosensor applications. Phys. Chem. Glasses 47, 88–91 (2006)

    Google Scholar 

  4. T. Ohta, Phase change optical memory promotes the DVD optical disc. J. Optoelectron. Adv. Mater. 3, 609–626 (2001)

    Google Scholar 

  5. A.M. Andriesh, M.S. Iovu, S.D. Shutov, Chalcogenide non-crystalline semiconductors in optoelectronics. J. Optoelectron. Adv. Mater. 4, 631–648 (2002)

    Google Scholar 

  6. N. Mehta, Application of chalcogenide glasses in electronics and optoelectronics: a review. J. Sci. Ind. Res. 65, 777–786 (2006)

    Google Scholar 

  7. W. Vogel, Chemistry of glass (The American Ceramic Society, Columbus, 1985)

    Google Scholar 

  8. V.F. Kokoring, Glasses For infrared optics (CRC Press, Boca Raton, 1996)

    Google Scholar 

  9. S.-W. Chen, M.-H. Lin, B.-R. Shie, J.-L. Wang, Infrared reactions in As-Se/Zn. J. Non-Cryst. Sol. 220, 243–248 (1997)

    Article  ADS  Google Scholar 

  10. S.-D. Ho, Y.-M. Dai, S.-W. Chen, J.-L. Wang, Glass formation, density, microhardness and microstructure of the As-Se-Te chalcogenide alloys. J. Non-Cryst. Sol. 221, 290–296 (1997)

    Article  ADS  Google Scholar 

  11. R.H. Hopkins, W.E. Kramer, G.B. Brandt, J.S. Schruben, R.A. Hoffman, K.B. Steinbruegge, T.L. Peterson, Fabrication and evaluation of erosion-resistant multispectral optical windows. J. Appl. Phys. 49, 3133–3139 (1978)

    Article  ADS  Google Scholar 

  12. F. Sava, Structure and properties of chalcogenide glasses in the system (As2S3)1−x (Sb2S3) x . J. Optoelectron. Adv. Mater. 3, 425–432 (2001)

    Google Scholar 

  13. M.L. Trunov, Photo-induced plasticity in amorphous chalcogenides: an overview of mechanisms and applications. J. Optoelectron. Adv. Mater. 7, 2235–2246 (2005)

    Google Scholar 

  14. A.K. Varshneya, Daniel J. Mauro, Microhardness, indentation toughness, elasticity, plasticity and brittleness of Ge-Sb-Se chalcogenide glass. J. Non-Cryst. Sol. 353, 1291–1297 (2007)

    Article  ADS  Google Scholar 

  15. V. Vassilev, M. Radonova, S. Boycheva, Glass formation the GeSe2-Sb2 Te3-CdSe system. J. Non-Cryst. Sol. 356, 2728–2733 (2010)

    Article  ADS  Google Scholar 

  16. H. Kumar, A. Sharma, N. Mehta, Effect of Bi-incorporation on some thermo-mechanical properties of glassy Se78Te20Sn2 alloy. J. Optoelectron. Adv. Mater. 14, 899–904 (2012)

    Google Scholar 

  17. H. Kumar, A. Sharma, N. Mehta, Effect of lead incorporation on some thermo-mechanical properties of glassy Se78Te20Sn2 alloy. Mater. Foc. 2, 184–187 (2013)

    Article  Google Scholar 

  18. A. Srivastava, N. Mehta, Investigation of some thermo-mechanical and dielectric properties in multi-component chalcogenide glasses of Se-Te-Sn-Ag quaternary system. J. Alloy. And Comp. 658, 533–542 (2016)

    Article  Google Scholar 

  19. M.M. Smedskjaer, J.C. Mauro, Y. Yue, Prediction of glass hardness using temperature dependent constraint theory. Phy. Rev. Lett. 105, 115503 (2010)

    Article  ADS  Google Scholar 

  20. L. Ainsworth, The diamond pyramid hardness of glass in relation to the strength and structure of glass. J. Soc. Glass Technol. 38, 479–547 (1954)

    Google Scholar 

  21. J.H. Westbrook, Hardness temperature characteristics of some simple glasses. Phys. Chem. Glasses 1, 32–36 (1960)

    Google Scholar 

  22. J.E. Neely, J.D. Mackenzie, Hardness and low temperature deformation of silica glass. J. Mater. Sci. 3, 603–609 (1968)

    Article  ADS  Google Scholar 

  23. N.A. Ghoneim, H.A. Batal, Microhardness and softening point of some alumino-borate glasses as flow dependent properties. J. Non-cryst. Sol. 55, 343–351 (1983)

    Article  ADS  Google Scholar 

  24. S.K. Arora, G.S. Trivikramaand, N.M. Batra, Vickers micromechanical indentation of BaMoO4 crystals. J. Mater. Sci. 19, 297–302 (1984)

    Article  ADS  Google Scholar 

  25. S.V. Bovcheva, V.S. Vassilev, P. Petkov, New chalcogenide glasses in the GeSe2-As2Se3-CdTe system. J. Optoelectron. Adv. Mater. 3, 503–508 (2001)

    Google Scholar 

  26. L. Tichy, H. Ticha, Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J. Non-Cryst. Sol. 189, 141–146 (1995)

    Article  ADS  Google Scholar 

  27. M. Vlcek, M. Frumar, Model of photoinduced changes of optical properties in amorphous layers and glasses of Ge-Sb-S, Ge-S, As-S, and As-Se systems. J. Non-Cryst. Solids 97&98, 1223–1226 (1987)

    Article  Google Scholar 

  28. E. Savova, E. Skordeva, E. Vateva, The topological phase transition in some Ge-Sb-S glasses and thin films. J. Phys. Chem. Sol. 55, 575–578 (1994)

    Article  ADS  Google Scholar 

  29. E. Skordeva, D. Arsova, A topological phase transition in ternary chalcogenide films. J. Non-Cryst. Sol. 192&193, 665–668 (1995)

    Article  Google Scholar 

  30. V. Vassilev, M. Radonova, S. Boycheva, Glass formation in the GeSe2-Sb2Te3-CdSe system. J. Non-cryst. Sol. 356, 2728–2733 (2010)

    Article  ADS  Google Scholar 

  31. G. Saffarini, Compositional trends of the compactness in ternary chalcogenide glasses of the Ge-In-Se system. Phys. B 253, 52–55 (1998)

    Article  ADS  Google Scholar 

  32. L. Aljihmani, K. Petkov, V. Vassilev, Glass forming region in GeSe2-GeTe-PbTe system and some physicochemical properties of glassy alloys. J. Non-cryst. Sol. 358, 364–367 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NM is thankful to his university for providing grant under the consumable head of DST-Purse program-(5050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mehta, N. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system. Appl. Phys. A 123, 410 (2017). https://doi.org/10.1007/s00339-017-1028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1028-9

Keywords

Navigation