Skip to main content
Log in

Optimal design of self-similar serpentine interconnects embedded in stretchable electronics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The order-2 self-similar serpentine interconnects (SSIs) that joint rigid, functional devices can ensure mechanical integrity and stretchability in electronic systems under large deformations. However, the conventional design and analysis aim merely at the freestanding order-2 SSIs. The paper studies the design law and the stretchability of order-2 SSI that are bonded onto the polydimethylsiloxane (PDMS) substrate in stretchable electronics through analytical modeling, finite element method (FEM), and experiments. The scale law formula is built to predict the stretchability of the order-2 SSI with geometry parameters based on FEM simulation results. The out-of-plane and in-plane bending strains during lateral postbuckling processes are proportional to the thickness and width of the order-2 SSI, respectively. The stretchability of order-2 SSI decreases with the increasing ratio β of order-2 space L 2 to order-1 space L 1, and it would be approximate to the stretchability of order-1 serpentine interconnect when β > 32. The optimized order-2 SSI is demonstrated in stretchable electronics application with high stretchability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333, 838–843 (2011)

    Article  ADS  Google Scholar 

  2. R. Bhunia, S. Das, S. Dalui, S. Hussain, R. Paul, R. Bhar, A.K. Pal, Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl. Phys. A 122, 637 (2016)

    Article  ADS  Google Scholar 

  3. W.-Y. Chang, T.-H. Fang, C.-I. Weng, S.-S. Yang, Flexible piezoelectric harvesting based on epitaxial growth of ZnO. Appl. Phys. A 102, 705–711 (2011)

    Article  ADS  Google Scholar 

  4. G. Shin, I. Jung, V. Malyarchuk, J. Song, S. Wang, H.C. Ko, Y. Huang, J.S. Ha, J.A. Rogers, Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. Small 6, 851–856 (2010)

    Article  Google Scholar 

  5. S. Lim, D. Son, J. Kim, Y.B. Lee, J.K. Song, S. Choi, D.J. Lee, J.H. Kim, M. Lee, T. Hyeon, Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Func. Mater. 25, 375–383 (2015)

    Article  Google Scholar 

  6. K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010)

    Article  ADS  Google Scholar 

  7. L. Encica, D. Echeverría, E.A. Lomonova, A.J.A. Vandenput, P.W. Hemker, D. Lahaye, Efficient optimal design of electromagnetic actuators using space mapping. Struct. Multidiscip. Optim. 33, 481–491 (2007)

    Article  Google Scholar 

  8. H. Jiang, Y. Sun, J.A. Rogers, Y. Huang, Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007)

    Article  ADS  Google Scholar 

  9. H. Wu, Y. Huang, F. Xu, Y. Duan, Z. Yin, Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28, 9881–9919 (2016)

    Article  Google Scholar 

  10. J.W. Lee et al., Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc. Natl. Acad. Sci. 113(22), 6131–6136 (2016)

    Article  ADS  Google Scholar 

  11. C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y.S. Kim, Y. Huang, A.R. Damadoran, J. Xia, L.W. Martin, Y. Huang, J.A. Rogers, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014)

    Article  Google Scholar 

  12. J. Song, X. Feng, Y. Huang, Mechanics and thermal management of stretchable inorganic electronics. Nat. Sci. Rev. 3, 128–143 (2016)

    Article  Google Scholar 

  13. M. Gonzalez, B. Vandevelde, W. Christiaens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. V. D. Sluis, P. H. M. Timmermans, Design and implementation of flexible and stretchable systems. Microelectron. Reliab. 51, 1069–1076 (2011)

  14. M. Gonzalez, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825–832 (2008)

    Article  Google Scholar 

  15. Y. Huang, Z. Yin, Y. Xiong, Thermomechanical analysis of film-on-substrate system with temperature-dependent properties. J. Appl. Mech. 77, 041016 (2010)

    Article  ADS  Google Scholar 

  16. B.K. Jung, J.R. Cho, W.B. Jeong, Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm. J. Mech. Sci. Technol. 29, 2775–2783 (2015)

    Article  Google Scholar 

  17. Y. Li, Y. Gao, J. Song, Recent advances on thermal analysis of stretchable electronics. Theor. Appl. Mech. Lett. 6, 32–37 (2016)

    Article  Google Scholar 

  18. D.-Y. Khang, J.A. Rogers, H.H. Lee, Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv. Func. Mater. 19, 1526–1536 (2009)

    Article  Google Scholar 

  19. D.-H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008)

    Article  Google Scholar 

  20. Z. Hu, X. Du, D. Conrad, R. Twohy, M. Walmsley, Fatigue reliability analysis for structures with known loading trend. Struct. Multidiscip. Optim. 50, 9–23 (2014)

    Article  Google Scholar 

  21. Y.W. Su, S.D. Wang, Y.A. Huang, H.W. Luan, W.T. Dong, J.A. Fan, Q.L. Yang, J.A. Rogers, Y.G. Huang, Elasticity of fractal inspired interconnects. Small 11, 367–373 (2015)

    Article  Google Scholar 

  22. S. Xu, Y. Zhang, J. Cho et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Article  Google Scholar 

  23. Q. Ma, Y. Zhang, Mechanics of fractal-inspired horseshoe microstructures for applications in stretchable electronics. J. Appl. Mech. 83, 111008 (2016)

    Article  ADS  Google Scholar 

  24. Y. Huang, W. Dong, T. Huang, Y. Wang, L. Xiao, Y. Su, Z. Yin, Self-similar design for stretchable wireless LC strain sensors. Sens. Actuators, A 224, 36–42 (2015)

    Article  Google Scholar 

  25. Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J.A. Fan, K.-C. Hwang, J.A. Rogers, Y. Huang, Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013)

    Article  Google Scholar 

  26. H. Fu, S. Xu, R. Xu, J. Jiang, Y. Zhang, J.A. Rogers, Y. Huang, Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. Appl. Phys. Lett. 106, 091902 (2015)

    Article  ADS  Google Scholar 

  27. S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)

    Article  ADS  Google Scholar 

  28. Y. Zhang, S. Wang, X. Li, J.A. Fan, S. Xu, Y.M. Song, K.-J. Choi, W.-H. Yeo, W. Lee, S.N. Nazaar, B. Lu, L. Yin, K.-C. Hwang, J.A. Rogers, Y. Huang, Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Func. Mater. 24, 2028–2037 (2014)

    Article  Google Scholar 

  29. Y. Su, J. Wu, Z. Fan, K.-C. Hwang, J. Song, Y. Huang, J.A. Rogers, Postbuckling analysis and its application to stretchable electronics. J. Mech. Phys. Solids 60, 487–508, (2012)

  30. S. Satyanarayana, R.N. Karnik, A. Majumdar, Stamp-and-stick room-temperature bonding technique for microdevices. J. Microelectromech. Syst. 14, 392–399 (2005)

    Article  Google Scholar 

  31. Y. Zhang, S. Xu, H. Fu, J. Lee, J. Su, K.C. Hwang, J.A. Rogers, Y. Huang, Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge supports from the National Natural Science Foundation of China (51635007, 51322507). The authors would like to thank the Laboratory of Flexible Electronics Manufacturing in HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Zhu, C., Ye, D. et al. Optimal design of self-similar serpentine interconnects embedded in stretchable electronics. Appl. Phys. A 123, 428 (2017). https://doi.org/10.1007/s00339-017-0985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0985-3

Keywords

Navigation