Skip to main content

Advertisement

Log in

Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanogenerators (NGs) which harvest energy from mechanical vibration have attracted more attention in the past decade. Piezoelectric materials are the most promising candidates for developing NGs. Flexible free-standing nano-ZnO/PVDF composite films are prepared by incorporating different amounts of nano-ZnO fillers in PVDF matrix using sol–gel technique. Poled films show enhanced dielectric constant. The above free-standing films, with appropriate contacts, are subjected to energy harvesting studies. The output voltage increases with nano-ZnO loading in the PVDF matrix and shows enhanced effect for the poled films. Piezoelectric properties are investigated by measuring the piezoelectric charge constant (d 33) and piezoelectric voltage constant (g 33). A maximum AC output voltage ~4 V and output power of the order of few nanowatts are recorded for the nanogenerator which is used to light a red LED using a rectifying circuit through the discharging of a capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.H. Kim, B. Kumar, K.Y. Lee, H.K. Park, J.H. Lee, H.H. Lee, H. Jun, D. Lee, S.W. Kim, Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation. Sci. Rep. 3, 1–6 (2017)

    Google Scholar 

  2. L. Chen, X. Xu, P. Zeng, J. Ma, Integration of energy harvester for self-powered wireless sensor network nodes. Int. J. Distrib. Sens. Netw. 2014, 1–7 (2014)

    Google Scholar 

  3. T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, M. Zhu, Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015)

    Article  Google Scholar 

  4. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10(12), 4939–4943 (2010)

    Article  ADS  Google Scholar 

  5. Z.-H. Lin, Y. Yang, J.M. Wu, Y. Liu, F. Zhang, Z.L. Wang, BaTiO3 nanotubes-based flexible and transparent nanogenerators. J. Phys. Chem. Lett. 3, 3599–3604 (2012)

    Article  Google Scholar 

  6. G. Zhu, R. Yang, S. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151–3155 (2010)

    Article  ADS  Google Scholar 

  7. K.Y. Lee, M.K. Gupta, S.W. Kim, Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14, 139–160 (2014)

    Article  Google Scholar 

  8. Y.K.A. Low, L.Y. Tan, L.P. Tan, F.Y.C. Boey, K.W. Ng, Increasing solvent polarity and addition of salts promote β-phase poly(vinylidene fluoride) formation. J. Appl. Polym. Sci. 128, 2902–2910 (2013)

    Article  Google Scholar 

  9. V. Strashilov, G. Alexieva, B. Vincent, V.S. Nguyen, D. Rouxel, Structural impact on piezoelectricity in PVDF and P(VDF-TrFE) thin films. Appl. Phys. A 118, 1469–1477 (2015)

    Article  ADS  Google Scholar 

  10. Y.-J. Lee, J. Wang, S.R. Cheng, J.W.P. Hsu, Solution processed ZnO hybrid nanocomposite with tailored work function for improved electron transport layer in organic photovoltaic devices. ACS Appl. Mater. Interfaces 5, 9128–9133 (2013)

    Article  Google Scholar 

  11. W.K. Choi, D.H. Park, B.W. Kwon, D.I. Son, US Patent No. WO2012165753 A1, Application No. PCT/KR2012/001433 (2012)

  12. C.J.L. Constantino, A.E. Job, R.D. Simoes, J.A. Giacometti, V. Zucolotto, O.N. Oliveira Jr., G. Gozzi, D.L. Chinaglia, Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl. Spectrosc. 59, 275–279 (2005)

    Article  ADS  Google Scholar 

  13. S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 34, 727–733 (2011)

    Article  Google Scholar 

  14. T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 210, 315–329 (2002)

    Article  Google Scholar 

  15. Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation. Polym. Testing 23, 791–796 (2004)

    Article  Google Scholar 

  16. B. Mattsson, H. Ericson, L.M. Torell, F. Sundholm, Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy. Electrochim. Acta 45, 1405–1408 (2000)

    Article  Google Scholar 

  17. B. Mattsson, H. Ericson, L.M. Torell, F. Sundholm, Micro-Raman investigations of PVDF-based proton-conducting membranes. J. Polym. Sci. A Polym. Chem. 37, 3317–3327 (1999)

    Article  ADS  Google Scholar 

  18. M.T. Riosbaas, K.J. Loh, G.O. Bryan, B.R. Loyol, In situ phase change characterization of PVDF thin films using Raman spectroscopy. Proc. SPIE 9061, 90610Z (2014). doi:10.1117/12.2045430

    ADS  Google Scholar 

  19. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909–1911 (2002)

    Article  ADS  Google Scholar 

  20. B. Cheng, Y. Xiao, G. Wu, L. Zhang, The vibrational properties of one-dimensional ZnO: Ce nanostructures. Appl. Phys. Lett. 84, 416–418 (2004)

    Article  ADS  Google Scholar 

  21. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974–1976 (2003)

    Article  ADS  Google Scholar 

  22. J. Bird, Electrical Circuit Theory and Technology (Routledge, Abingdon, 2014), p. 567

    Google Scholar 

  23. A.R. West, D.C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1, 65–71 (1997)

    Article  Google Scholar 

  24. J.S. Harrison, Z. Ounaies, Piezoelectric Polymers Encyclopedia of Polymer Science and Technology (Wiley, New York, 2002), pp. 474–498

    Google Scholar 

  25. K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23, 033001 (2014)

    Article  ADS  Google Scholar 

  26. H. Landolt, R. Börnstein, H. Fischer, O. Madelung, G. Deuschle, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, ed. by O. Madelung. New Series, Group III, Vol. 17 (Springer-Verlag, Berlin, 1987), p. 164

Download references

Acknowledgments

The authors wish to thank Board of Research in Nuclear Sciences (BRNS), Government of India, for the financial assistance to carry out this research program. R.B. wishes to thank the Department of Science and Technology, Government of India, while S.D. wishes to thank the BRNS, Government of India, for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, R., Das, S., Dalui, S. et al. Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl. Phys. A 122, 637 (2016). https://doi.org/10.1007/s00339-016-0161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0161-1

Keywords

Navigation