Skip to main content
Log in

Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In human brain, a large number of neurons are connected via synapses. Simulation of the synaptic behaviors using electronic devices is the most important step for neuromorphic systems. In this paper, proton conducting gelatin electrolyte-gated oxide field-effect transistors (FETs) were used for emulating synaptic functions, in which the gate electrode is regarded as pre-synaptic neuron and the channel layer as the post-synaptic neuron. In analogy to the biological synapse, a potential spike can be applied at the gate electrode and trigger ionic motion in the gelatin electrolyte, which in turn generates excitatory post-synaptic current (EPSC) in the channel layer. Basic synaptic behaviors including spike time-dependent EPSC, paired-pulse facilitation (PPF), self-adaptation, and frequency-dependent synaptic transmission were successfully mimicked. Such ionic/electronic hybrid devices are beneficial for synaptic electronics and brain-inspired neuromorphic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Kuzum, S. Yu, H.P. Wong, Nanotechnology 24, 382001 (2013)

    Article  ADS  Google Scholar 

  2. P. Gkoupidenis, N. Schaefer, X. Strakosas, J.A. Fairfield, G.G. Malliaras, Appl. Phys. Lett. 107, 263302 (2015)

    Article  ADS  Google Scholar 

  3. Y. Li, Y.-P. Zhong, Y.-X. Zhou, S.-J. Zhong, Y.-Z. Hu, L.O. Chua, X.-S. Miao. Adv. Electron. Mater. 1, 1500125 (2015)

    Article  Google Scholar 

  4. Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu, X.J. Zhu, Adv. Electron. Mater. 22, 2759 (2012)

    Google Scholar 

  5. G.Q. Bi, M.M. Poo, J. Neurosci. 18, 10464 (1998)

    Google Scholar 

  6. G.Q. Bi, M.M. Poo, Nature 401, 792 (1999)

    Article  ADS  Google Scholar 

  7. K. Gacem, J.-M. Retrouvey, D. Chabi, A. Filoramo, W. Zhao, J. Klein, V. Derycke, Nanotechnology 24, 384013 (2013)

    Article  ADS  Google Scholar 

  8. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Nat. Mater. 10, 591 (2011)

    Article  ADS  Google Scholar 

  9. Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, X. Miao, Sci. Rep. 3, 1619 (2013)

    ADS  Google Scholar 

  10. R. Pan, J. Li, F. Zhuge, L. Zhu, L. Liang, H. Zhang, J. Gao, H. Cao, B. Fu, K. Li, Appl. Phys. Lett. 108, 013504 (2016)

    Article  ADS  Google Scholar 

  11. F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-Gotarredona, B. Linares-Barranco, D. Vuillaume, Adv. Funct. Mater. 22, 609 (2012)

    Article  Google Scholar 

  12. H. Tian, W. Mi, X.-F. Wang, H. Zhao, Q.-Y. Xie, C. Li, Y.-X. Li, Y. Yang, T.-L. Ren, Nano Lett. 15, 8013 (2015)

    Article  ADS  Google Scholar 

  13. J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan. Nat. Commun. 4, 2676 (2013)

    ADS  Google Scholar 

  14. C.J. Wan, L.Q. Zhu, J.M. Zhou, Y. Shi, Q. Wan, Nanoscale 6, 4491 (2014)

    Article  ADS  Google Scholar 

  15. C. Qian, L. Kong, J. Yang, Y. Gao, J. Sun, Appl. Phys. Lett. 110, 083302 (2017)

    Article  ADS  Google Scholar 

  16. T. Mills, L.G. Kaake, X.-Y. Zhu, Appl. Phys. A 95, 291 (2009)

    Article  ADS  Google Scholar 

  17. L. Kong, J. Sun, C. Qian, C. Wang, J. Yang, Y. Gao, Org. Electron 44, 25 (2017)

    Article  Google Scholar 

  18. E.E. Josnerger, Y. Deng, W. Sun, R. Kautz, M. Rolandi, Adv. Mater. 26, 4986 (2014)

    Article  Google Scholar 

  19. K. Kim, C.-L. Chen, Q. Truong, A.M. Shen, Y. Chen, Adv. Mater. 25, 1693 (2013)

    Article  Google Scholar 

  20. P. Gkoupidenis, N. Schaefer, B. Garlan, G.G. Milliaras, Adv. Mater. 27, 7176 (2015)

    Article  Google Scholar 

  21. J. Zhou, C. Wan, L. Zhu, Y. Shi, Q. Wan, IEEE Electron Device Lett 34, 1433 (2013)

    Article  ADS  Google Scholar 

  22. L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Nat. Commun. 5, 3158 (2014)

    ADS  Google Scholar 

  23. L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S.S.H. Hsu, P.-C. Luy, T.-J. Liu, Organic Electron 14, 1170 (2013)

    Article  Google Scholar 

  24. L.-K. Mao, J.-C. Hwang, Y.-L. Chueh, Org. Electron 15, 2400 (2014)

    Article  Google Scholar 

  25. L.-K. Mao, J.-Y. Gan, J.-C. Hwang, T.-H. Chang, Y.-L. Chueh, Org. Electron 15, 920 (2014)

    Article  Google Scholar 

  26. Y. He, J. Sun, C. Qian, L. Kong, J. Jiang, J. Yang, H. Li, Y. Gao, Org. Electron 38, 357 (2016)

    Article  Google Scholar 

  27. A. Lu, J. Sun, J. Jiang, Q. Wan, IEEE Electron Device 31, 1137 (2010)

    Article  ADS  Google Scholar 

  28. F. Liu, C. Qian, J. Sun, P. Liu, Y. Huang, Y. Gao, J. Yang, Appl. Phys. A 122, 311 (2016)

    Article  ADS  Google Scholar 

  29. L. Kong, J. Sun, C. Qian, G. Gou, Y. He, J. Yang, Y. Gao, Org. Electron 39, 64 (2016)

    Article  Google Scholar 

  30. F. Liu, J. Sun, C. Qian, X. Hu, H. Wu, Y. Huang, J. Yang, Appl. Phys. A 122, 841 (2016)

    Article  ADS  Google Scholar 

  31. O. Larsson, E. Said, M. Berggren, X. Crispin, Adv. Funct. Mater. 19, 3334 (2009)

    Article  Google Scholar 

  32. Z. Zheng, J. Jiang, J. Guo, J. Sun, J. Yang, Org. Electron 33, 311 (2016)

    Article  Google Scholar 

  33. B. Zhou, J. Sun, X. Han, J. Jiang, Q. Wan. IEEE Electron Device Lett. 32, 1549 (2011)

    Article  ADS  Google Scholar 

  34. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009)

    Article  Google Scholar 

  35. J. Zhou, N. Liu, L. Zhu, Y. Shi, Q. Wan, IEEE Electron Device Lett. 36, 198 (2015)

    Article  ADS  Google Scholar 

  36. G. Indiveri, E. Chicca, R. Douglas, IEEE Trans. Neural Netw 17, 211 (2006)

    Article  Google Scholar 

  37. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)

    Article  ADS  Google Scholar 

  38. D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.-S.P. Wong, Nano Lett. 12, 2179 (2012)

    Article  ADS  Google Scholar 

  39. T. Chang, S.-H. Jo, W. Lu, ACS Nano 9, 7669 (2011)

    Article  Google Scholar 

  40. A.L. Fairhall, G.D. Lewen, W. Bialek, R.R.R. van Steveninck, Nature 412, 787 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61306085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Sun or Hongjian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Sun, J., Qian, C. et al. Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes. Appl. Phys. A 123, 277 (2017). https://doi.org/10.1007/s00339-017-0917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0917-2

Keywords

Navigation