Skip to main content
Log in

Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300 °C

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lithium-doped zinc oxide (Li-ZnO) thin-film transistors (TFTs) were fabricated by solution process at the low temperatures ranged from 100 to 300 °C. Li-ZnO TFTs fabricated at 300 °C under nitrogen condition showed a mobility of 1.2 cm2/Vs. Most importantly, the mobility of Li-ZnO TFT devices fabricated at 100 °C could be increased significantly from 0.08 to 0.4 cm2/Vs by using double spin-coated and UV irradiation-treated Li-ZnO film, and the on-/off-current ratio is in the order of 106. Notably, the XPS analyses proved that the performance improvement was originated from the chemical composition or stoichiometry evolution, in which the hydroxide was converted into metal oxide and accelerated the formation of the oxygen vacancies. Furthermore, low-voltage operating Li-ZnO TFTs were demonstrated by using a high-capacitance ion gel gate dielectrics. The Li-ZnO TFTs with an operating voltage as low as 2 V exhibited the carrier mobilities of 2.1 and 0.65 cm2/Vs for the devices treated at 300 and 100 °C, respectively. The low-temperature, solution-processed Li-ZnO TFTs showed greatly potential applications in flexible displays, smart label, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Frenzel, A. Lajn, M. Grundmann, One decade of fully transparent oxide thin-film transistors: fabrication, performance and stability. Phys. Status Solidi RRL 7(9), 605–615 (2013)

    Article  Google Scholar 

  2. K. Kim, S. Park, J.B. Seon et al., Patterning of flexible transparent thin-film transistors with solution-processed ZnO using the binary solvent mixture. Adv. Funct. Mater. 21(18), 3546–3553 (2011)

    Article  Google Scholar 

  3. K.K. Banger, R.L. Peterson, K. Mori et al., High performance, low temperature solution-processed barium and strontium doped oxide thin film transistors. Chem. Mater. 26(2), 1195–1203 (2014)

    Article  Google Scholar 

  4. P.F. Carcia, R.S. McLean, M.H. Reilly et al., Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering. Appl. Phys. Lett. 82(7), 1117–1119 (2003)

    Article  ADS  Google Scholar 

  5. J. Sun, C. Qian, W. Huang, J. Yang, Y. Gao, Ion-dependent gate dielectric characteristics of ion-conducting SiO2 solid-electrolytes in oxide field-effect transistors. Phys. Chem. Chem. Phys. 16(16), 7455–7460 (2014)

    Article  Google Scholar 

  6. A. Suresh, P. Wellenius, A. Dhawan et al., Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 90(12), 123512 (2007)

    Article  ADS  Google Scholar 

  7. S.J. Lim, J.M. Kim, D. Kim et al., Atomic layer deposition ZnO: N thin film transistor: the effects of N concentration on the device properties. J. Electrochem. Soc. 157(2), 214–218 (2010)

    Article  MathSciNet  Google Scholar 

  8. K. Song, Y. Jung, T. Kim, A. Kim, J.K. Hwang, Solution-processable tin-doped indium oxide with a versatile patternability for transparent oxide thin film transistors. J. Mater. Chem. 21(38), 14646–14654 (2011)

    Article  Google Scholar 

  9. S. Jeong, Y. Jeong, J. Moon, Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C 112(30), 11082–11085 (2008)

    Article  Google Scholar 

  10. S.J. Seo, C.G. Choi, Y.H. Hwang et al., High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D Appl. Phys. 42(3), 035106 (2009)

    Article  ADS  Google Scholar 

  11. K.W. Lee, K.Y. Heo, H.J. Kim, Photosensitivity of solution-based indium gallium zinc oxide single-walled carbon nanotubes blend thin film transistors. Appl. Phys. Lett. 94(10), 102112 (2009)

    Article  ADS  Google Scholar 

  12. S. Jeong, Y.G. Ha, J. Moon et al., Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22(12), 1346–1350 (2010)

    Article  Google Scholar 

  13. Mihai Irimia-V, “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43(2), 588–610 (2014)

    Article  Google Scholar 

  14. S.K. Park, B.J. Kim, K. Kim et al., Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv. Mater. 24(6), 834–838 (2012)

    Article  Google Scholar 

  15. Y.H. Kim, J.S. Heo, T.H. Kim et al., Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489(7414), 128–132 (2012)

    Article  ADS  Google Scholar 

  16. M.G. Kim, M.G. Kanatzidis, A. Facchetti et al., Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011)

    Article  ADS  Google Scholar 

  17. K.K. Banger, Y. Yamashita, K. Mori et al., Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10(1), 45–50 (2011)

    Article  ADS  Google Scholar 

  18. K.H. Lee, M.S. Kang, S. Zhang et al., “Cut and stick” rubbery ion gels as high capacitance gate dielectric. Adv. Mater. 24(32), 4457–4462 (2012)

    Article  Google Scholar 

  19. S.Y. Park, K. Kim, K.H. Lim et al., The structural, optical and electrical characterization of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs. J. Mater. Chem. C 1(7), 1383–1391 (2013)

    Article  Google Scholar 

  20. J. Chang, Z. Lin, C. Zhu et al., Solution-processed LiF-doped ZnO films for high performance low temperature field effect transistors and inverted solar cells. ACS Appl. Mater. Interfaces 5(14), 6687–6693 (2013)

    Article  Google Scholar 

  21. Y.H. Lin, H. Faber, K. Zhao et al., High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80 and 180°C. Adv. Mater. 25(31), 4340–4346 (2013)

    Article  Google Scholar 

  22. C. Qian, J. Sun, L. Zhang, H. Huang, J. Yang, Y. Gao, Crystal-domain orientation and boundary in highly ordered organic semiconductor thin film. J. Phys. Chem. C 119(27), 14965–14971 (2015)

    Article  Google Scholar 

  23. Y.C. Song, H.K. Young et al., Novel zinc oxide inks with zinc oxide nanoparticles for low temperature, solution-processed thin-film transistors. Chem. Mater. 24(18), 3517–3524 (2012)

    Article  Google Scholar 

  24. H. Bong, W.H. Lee, D.Y. Lee et al., High-mobility low-temperature ZnO transistors with low-voltage operation. Appl. Phys. Lett. 96(19), 192115 (2010)

    Article  ADS  Google Scholar 

  25. J. Sunho, M. Jooho, Low-temperature, solution-processed metal oxide thin film transistors. J. Mater. Chem. 22(4), 1243–1250 (2012)

    Article  Google Scholar 

  26. S. Jeong, J.Y. Lee, S.S. Lee et al., Metal salt-derived InGaZnO semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors. J. Mater. Chem. C 1(27), 4236–4243 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51203192, 61306085, 51173205, 11334014), the Hunan Provincial Natural Science Foundation of China (13JJ4019), and the Program for New Century Excellent Talents in University (NCET-13-0598). J. Sun also acknowledges the support of China Postdoctoral Science Foundation (2015T80881).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Sun or Junliang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Qian, C., Sun, J. et al. Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300 °C. Appl. Phys. A 122, 311 (2016). https://doi.org/10.1007/s00339-016-9903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9903-3

Keywords

Navigation