Skip to main content
Log in

Investigations on the structural and optical properties of sphere-shaped indium nitride (InN)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Indium nitride (InN) sphere-shaped micro crystals and nano crystals were made using sol–gel method. The crystalline size of the samples were calculated using X-ray diffraction, which were found to increase with the increase of nitridation temperature and time. High resolution-transmission electron microscopy images exhibited the distinct sphere shape of InN with different size of micro and nanometers. The calculated band gap of InN spheres using photo luminescence and UV–visible absorption spectra, was found to be 1.2 eV. Optical phonon modes of InN were determined from micro-Raman studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Luo, W. Zhao, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Yiang, J. Zhou, S. Xie, Synthesis of long indium nitride nanowires with uniform diameters in large quantities. Small 1, 1004 (2005)

    Article  Google Scholar 

  2. S.K. O’Lery, B.E. Fortz, M.S. Shur, L.F. Eastman, Steady-state and transient electron transport within bulk wurtzite indium nitride: an updated semi classical three-valley Monte Carlo simulation analysis. Appl. Phys. Lett. 87, 2221031 (2005)

    Google Scholar 

  3. S. Strite, H. Morkoc, GaN, AlN and InN: a review, J. Vac. Sci. Technol. B. 10, 1237 (1992)

    Article  Google Scholar 

  4. R. Wang, H.P.T. Nguyen, A.T. Connie, J. Lee, I. Shih, Z. Mi, Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt. Express 22, 1768 (2014)

    Article  ADS  Google Scholar 

  5. O. Kryliok, H.J. Park, Y.S. Won, T. Anderson, A. Davydov, I. Levin, J.A.F.J.H. Kim, Jr, Controlled synthesis of single crystalline InN nanorods. Nanotechnology 18, 1356061 (2007)

    Google Scholar 

  6. S. Krukowski, A. Witek, J. Adamczyk, J. Jun, M. Bockowski, I. Grzegory, B. Lucznik, G. Nowak, M. Wroblewski, A. Presz, S. Gierlotka, S. Stelmach, B. Palosz, S. Porowski, P. Zinn, Thermal properties of indium nitride. J. Phys. Chem. Solids 59, 289 (1998)

    Article  ADS  Google Scholar 

  7. A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, Indium nitride (InN): a review on growth, characterization and properties. J. Appl. Phys. 94, 2779 (2003)

    Article  ADS  Google Scholar 

  8. A. Miura, T. Takei, N. Kumada, Synthesis of wurtzite-type InN crystals by low temperature nitridation of LilnO2 using NaNH2 flux. J. Cryst. Growth. Des. 12, 4545 (2012)

    Article  Google Scholar 

  9. C. Wu, T. Li, L. Lei, S. Hu, Y. Liu, Y. Xie, Indium nitride form indium iodide at low temperatures: synthesis and their optical properties. New J. Chem. 29, 1610 (2005)

    Article  Google Scholar 

  10. J. Xiao, Y. Xie, R. Tang, W. Luo, Benzene thermal conversion to nanocrystalline indium nitride from sulfide at low temperature. Inorg. Chem. 42, 107 (2003)

    Article  Google Scholar 

  11. M.A. Qaeed, K. Ibrahim, K.M.A. Saron, Q.N. Abdullah, G.N. Elfadill, S.H. Abud, K.M. Chahrour, The effective role of time in synthesizing InN by chemical method at low temperature. J. Mater. Sci: Mater. Electron. 25, 1376 (2014)

    Google Scholar 

  12. J. W. Trainor, K. Rose, Some properties of indium nitride films prepared by reactive evaporation. J. Electron. Mater. 3, 821 (1974)

    Article  ADS  Google Scholar 

  13. Q. Guo, O. Kato, A. Yoshida, Thermal stability of InN single crystal films. J. Appl. Phys. 73, 7969 (1993)

    Article  ADS  Google Scholar 

  14. B. Schwenzer, L. Loeffler, R. Seshadri, S. Keller, F.F. Lange, S.P. Denbaars, U.K. Mishra, Preparation of indium nitride micro and nanostructures by ammonolysis of indium oxide. J. Mater. Chem. 14, 637 (2004)

    Article  Google Scholar 

  15. T. Matsuoka, H. Okamota, M. Nakao, H. Harima, E. Kurimoto, Optical bandgap energy of wurtzite InN. App. Phys. Lett. 81, 1246 (2002)

    Article  ADS  Google Scholar 

  16. M. Kao, R.M. Erasumu, N. Moloto, N.J. Coville, S.D. Mhlanga, UV-assisted synthesis of indium nitride nano and microstructures. J. Mater. Chem. A 3, 5962 (2015)

    Article  Google Scholar 

  17. M. Yoshimoto, H. Yamamoto, W. Hang, H. Harima, J. Saraie, A. Chayahara, Y. Horino, Widening of optical bandgap of polycrystalline InN with a few percent incorporation of oxygen. Appl. Phys. Lett. 83, 3480 (2003)

    Article  ADS  Google Scholar 

  18. S. Ge, B. Wang, J. Lin, L. Zhang, C, N-Co doped InOOH microspheres: one-pot synthesis, growth mechanism and visible light photo catalysis. Cryst. Eng. Commun. 15, 721(2013)

    Article  Google Scholar 

  19. A.M.N. Silva, X. Kong, M.C. Parkin, R. Cammack, R.C. Hider, Iron (III) citrate speciation in aqueous solution. Dalton Trans. 40, 8616 (2009)

    Article  Google Scholar 

  20. R.M. Ferreira, M. Motta, A.B. Neto, C.F.O. Graeff, P.N.C. Filho, F.C. Lavarda, Theoretical investigation of geometric configurations and vibrational spectra in citric acid complexes. Mater. Res. 17, 550 (2014)

    Article  Google Scholar 

  21. A. Hardy, J. D’Haen, M.K.V. Bael, J. Mullens, An aqueous solution–gel citratoperoxo–Ti(IV) precursor: synthesis, gelation, thermo-oxidative decomposition and oxide crystallization. J. Sol. Gel. Sci. Technol. 44, 65 (2007)

    Article  Google Scholar 

  22. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticle: synthesis, structural electrical properties. Phys. B 407, 1223 (2012)

    Article  ADS  Google Scholar 

  23. O. Briot, B. Maleyre, S. Ruffenach, B. Gil, F. Demangeot, J. Frandon, Absorption and Raman scattering processes in InN films and dots. J. Cryst. Growth 269, 22 (2004)

    Article  ADS  Google Scholar 

  24. Z.G. Qian, W.Z. Shen, H. Ogawa, Q.X. Guo, Raman investigations of disorder in InN thin film grown by reactive sputtering on GaAs. J. Appl. Phys. 93, 2643 (2003)

    Article  ADS  Google Scholar 

  25. P. Bhattacharya, T.K. Sharma, S. Singh, A. Ingale, L.M. Kukreja, Observation of zincblend phase in InN thin films grown on sapphire by nitrogen plasma-assisted pulsed laser deposition. J. Cryst. Growth 236, 5 (2002)

    Article  ADS  Google Scholar 

  26. V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, D.A. Kurdyukov, S.V. Iranov, V.A. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Graul, A.V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, E.E. Haller, Band gap of hexagonal InN and InGaN alloys. Phys. Stat. Sol. B 234, 787 (2002)

    Article  ADS  Google Scholar 

  27. J. Wu, When group III-nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 0111101 (2009)

    ADS  Google Scholar 

  28. V.Y. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Lvanov, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudrvi, J. Aderhold, O. Semchinova, J. Graul, Absorption and emission of hexagonal InN. Evidence of narrow fundamental bandgap. Phys. Stal. Sol. B. 229, 1 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the author, Mr. C. Bagavath would like to thank the Government of India, for the financial support through Rajiv Gandhi National Fellowship (RGNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagavath, C., Nasi, L. & Kumar, J. Investigations on the structural and optical properties of sphere-shaped indium nitride (InN). Appl. Phys. A 123, 287 (2017). https://doi.org/10.1007/s00339-017-0903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0903-8

Keywords

Navigation