Skip to main content
Log in

Electrical and carrier transport properties of the Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode with rare-earth oxide interlayer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical and transport properties of rare-earth Y2O3 on n-type GaN with Au electrode have been investigated by current–voltage and capacitance–voltage techniques at room temperature. The Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode shows a good rectification behavior compared to the Au/n-GaN metal–semiconductor (MS) diode. Statistical analysis showed that a mean barrier height (BH) and ideality factor are 0.78 eV and 1.93, and 0.96 eV and 2.09  for the Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes, respectively. Results indicate that the high BH is obtained for the MIS diode compared to the MS diode. The BH, ideality factor and series resistance are also estimated by Cheung’s function and Norde method. From the forward current–voltage data, the interface state density (N SS) is estimated for both the MS and MIS Schottky diodes, and found that the estimated N SS is lower for the MIS diode compared to the MS diode. The results reveal that the introduction of Y2O3 interlayer facilitated the reduction of N SS of the Au/n-GaN interface. Experimental results suggest that the Poole–Frenkel emission is a dominant conduction mechanism in the reverse bias region of both Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Nakamura, T. Mukai, M. Seroh, Candela-class high-brightness InGaN/AlGaN double heterostructure blue light emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994)

    Article  ADS  Google Scholar 

  2. V. Rajagopal Reddy, M. Ravinandan, P. Koteswara Rao, C-J. Choi, Effects of thermal annealing on the electrical and structural properties of Pt/Mo Schottky contacts on n-type GaN. J. Mater. Sci Mater. Electron. 20, 1018–1025 (2009)

    Article  Google Scholar 

  3. Z.Z. Bandic, P.M. Bridger, E.C. Piquette, T.C. McGill, R.P. Avudo, V.M. Phanse, J.M. Redwing, High voltage (450 V) GaN Schottky rectifiers. Appl. Phys. Lett. 74, 1266–1268 (1999)

    Article  ADS  Google Scholar 

  4. D. Mistele, T. Rotter, K.S. Röver, S. Paprotta, M. Seyboth, V. Schwegler, F. Fedler, H. Klausing, O.K. Semchinova, J. Stemmer, J. Aderhold, J. Graul, First AlGaN/GaN MOSFET with photoanodic gate dielectric. Mater. Sci. Eng. B 93, 107–111 (2002)

    Article  Google Scholar 

  5. J.D. Brown, R. Borges, E. Pinner, A. Vescan, S. Sighal, R. Therrien, AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (1 1 1) substrates. Solid-State Electron. 46, 1535–1539 (2002)

  6. J. Moon, M. Micovic, A. Kurdoghlian, P. Janke, P. Hashimto, W. Wong, L. Mc Cray, C. Nguyen, Microwave noise performance of AlGaN-GaN HEMTs with small DC power dissipation. IEEE Electron. Device Lett. 23, 637–639 (2002)

    Article  ADS  Google Scholar 

  7. R. Khanna, S. J. Peaterson, F. Ren, L. Kravchenko, C.J. Kao, G.C. Chin, W2B-based rectifying contacts to n-GaN. Appl. Phys. Lett. 87, 052110(1–3) (2005)

    Article  ADS  Google Scholar 

  8. J. Kwo, M. Hong, A.R. Kortan, K.L. Queeney, Y.J. Chabal, R.L. Opila, Jr..D.A. Muller, S.N.G. Chu, B.J. Sapjeta, T.S. Lay, J.P. Mannaerts, T. Boone, H.W. Krautter, J.J. Krajewski, A.M. Sergnt, J.M. Rosamilia, Properties of high K gate dielectrics Gd2O3 and Y2O3 for Si. J. Appl. Phys. 89, 3920–3927 (2001)

    Article  ADS  Google Scholar 

  9. K. Cico, J. Kuzmik, D. Gregusova, R. Stoklas, T. Lalinsky, A. Georgakilas, D. Pogany, K. Frohlich, Optimization and performance of Al2O3/GaN metal–oxide–semiconductor structures. Microelectron. Reliab. 47, 790–793 (2007)

    Article  Google Scholar 

  10. W.H. Chang, C.H. Lee, P. Chang, Y.C. Chang, Y.J. Lee, J. Kwo, C.C. Tsai, J.M. Hong, C.-H. Hsu, M. Hong, High K dielectric single-crystal monoclinic Gd2O3 on GaN with excellent thermal, structural, and electrical properties. J. Crys. Growth 311, 2183–2186 (2009)

    Article  ADS  Google Scholar 

  11. W.H. Chang, P. Chang, W.C. Lee, T.Y. Lai, J. Kwo, C-H. Hsu, J.M. Hong, M. Hong, Epitaxial stabilization of a monoclinic phase in Y2O3 films on c-plane GaN. J. Crys. Growth 323, 107–110 (2011)

    Article  ADS  Google Scholar 

  12. H.J. Quah, K.Y. Cheong, Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride. Nanoscale Res. Lett. 8, 53(1–7) (2013)

    Article  ADS  Google Scholar 

  13. H.J. Quah, K.Y. Cheong, Current conduction mechanisms of RF-magnetron sputtered Y2O3 gate oxide on gallium nitride. Curr. Appl. Phys. 13, 1433–1439 (2013)

    Article  ADS  Google Scholar 

  14. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y-H Kil, C-J Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499–3507 (2014)

    Article  ADS  Google Scholar 

  15. C. Liao, X. Zou, C.-W. Hung, J. Wang, K. Zhang, Y. Kong, T. Chen, W.-W. Wu, X. Xiao, C. Jiang, L. Liao, Low interface trap densities and enhanced performance of AlGaN/GaN MOS high- electron mobility transistors using thermal oxidized Y2O3 interlayer. IEEE Electron. Device Lett. 36, 1284–1286 (2015)

    Article  ADS  Google Scholar 

  16. Y. Irokawa, Hydrogen interaction with GaN metal–insulator–semiconductor diodes. Phys. B 407, 2957–2959 (2012)

    Article  ADS  Google Scholar 

  17. S.H. Kim, D.-M. Geum, M.-S. Park, W. J. Choi, In0.53Ga0.47 as an insulator metal–oxide–semiconductor field-effect transistors utilizing Y2O3 buried oxide. IEEE Electron. Device Lett. 36, 451–453 (2015)

    Article  ADS  Google Scholar 

  18. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts (Clarendon, Oxford Press, 1978)

  19. X.J. Wang, L. He, Electrical Characteristics of high performance Au/n-GaN Schottky diodes. J. Electron. Mater. 27, 1272–1276 (1998)

    Article  ADS  Google Scholar 

  20. V. Rajagopal Reddy, M.S.P Reddy, B.P. Lakshmi, A.A. Kumar, Electrical characterization of Au/n-GaN metal–semiconductor and Au/SiO2/n-GaN metal–insulator–semiconductor structures. J. Alloys Compond 509, 8001–8007 (2011)

    Article  Google Scholar 

  21. S.G. Wang, Y. Zhang, Y.M. Zhang, Y.M Zhang, Characterization of ion-implanted 4 H-SiC Schottky barrier diodes. Chin. Phys. B 19, 017203(1–5) (2010)

  22. O. Gullu, A. Turut, Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. J. Appl. Phys. 106, 103717(1–6) (2009)

    Article  ADS  Google Scholar 

  23. J.T. Lue, The barrier height change and current transport phenomena with the presence of interfacial layer in MIS Schottky barrier solar cells. Solid-State Electron. 23, 263–268 (1980)

    Article  ADS  Google Scholar 

  24. A.R.V. Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Appl. Phys. Lett. 86, 072105(1–3) (2005)

    Article  ADS  Google Scholar 

  25. M.S. Tyagi, Metal semiconductor Schottky barrier junctions and their applications. (Plenum, New York, 1994)

    Google Scholar 

  26. M. Drechsler, D.M. Hofmann, B.K. Meyer, T. Detchprohm, H. Amano, I. Akasaki, Determination of the conduction band electron effective mass in hexagonal GaN. Jpn. J. Appl. Phys. 34, L1178–L1179 (1995)

    Article  ADS  Google Scholar 

  27. P. Prabhu Thapaswini, R. Padma, N. Balaram, B. Bindu, V. Rajagopal Reddy, Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer. Superlattices Microstruct. 93, 82–91 (2016)

    Article  ADS  Google Scholar 

  28. R.T. Tung, Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 45, 13509–13523 (1992)

    Article  ADS  Google Scholar 

  29. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. App. Phys. Lett. 49, 85–87 (1986)

    Article  ADS  Google Scholar 

  30. M. Saglam, A. Ates, B. Guzeldir, A. Astam, M.A. Yildrim, Effects of thermal annealing on electrical characteristics of Cd/CdS/n-Si/Au–Sb sandwich structure. J. Alloys Compond 484, 570–574 (2009)

    Article  Google Scholar 

  31. V. Rajagopal Reddy, Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556, 300–306 (2014)

    Article  ADS  Google Scholar 

  32. H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    Article  ADS  Google Scholar 

  33. V. Janardhanam, Hyung-Joong Yun, I. Jyothi, Jouhahn Lee, Hyobong Hong, V, R. Reddy, C.-J. Choi, Energy-level alignment and electrical properties of Al/p-type Si Schottky diodes with sorbitol-doped PE.:PSS as an organic interlayer. J. Alloys Compond 637, 84–89 (2015)

    Article  Google Scholar 

  34. Z. Khurelbaatar, Y. Kil, H. Yun, K. Shim, J. Nam, K. Kim, S. Lee, C.-J. Choi, Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer. J. Alloys Compond 614, 323–329 (2014)

    Article  Google Scholar 

  35. V Rajagopal Reddy, V. Janardhanam, J.-W. Ju, H. Hong, C.-J. Choi, Electrical properties of Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure. Semicond. Sci. Technol. 29, 075001(6pp) (2014)

    Article  ADS  Google Scholar 

  36. S.M. Sze, Physics of semiconductor devices. (Wiley, New York, 1981)

    Google Scholar 

  37. D.K. Schroder Semiconductor materials and device characterization. (third ed., 2006)

  38. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys, D. Appl. Phys. 4, 1589–1601 (1971)

    Google Scholar 

  39. P. Chattopadyay, Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer. Solid-State Electron. 37, 1759–1762 (1994)

    Article  ADS  Google Scholar 

  40. A. Turt, M. Saglam, H. Efeoglu, N. Yalcm, M. Yildrim, B. Abay, Interpreting the nonideal reverse bias CV characteristics and importance of the dependence of Schottky barrier height on applied voltage. Phys. B 205, 41–50 (1995)

    Article  ADS  Google Scholar 

  41. V. Rajagopal Reddy, V. Janardhanam, C.-.J. Jin-WooJu, H.-J. Choi, Electronic parameters and carrier transport mechanism of high-barrier Se Schottky contacts to n-type GaN. Solid State Commun. 179, 34–38 (2014)

    Article  ADS  Google Scholar 

  42. H. Zhang, E. Miller, E. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaNAl0.25Ga0.75N∕GaN grown by molecular-beam epitaxy. J. Appl. Phys. 99, 023703(1–6) (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program (NRF-2015R1A6A1A04020421) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea, and by a grant from the R&D Program (Grant No. 10045216) for Industrial Core Technology funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea. It was also partially supported by research project of the ETRI (Grant No. B0132-15-1001) by the Ministry of Science, ICT and Future Planning, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Rajagopal Reddy or Chel-Jong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkata Prasad, C., Rajagopal Reddy, V. & Choi, CJ. Electrical and carrier transport properties of the Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode with rare-earth oxide interlayer. Appl. Phys. A 123, 279 (2017). https://doi.org/10.1007/s00339-017-0894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0894-5

Keywords

Navigation