Skip to main content
Log in

A density functional theory-based finite element method to study the vibrational characteristics of zigzag phosphorene nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the vibrational characteristics of zigzag phosphorene nanotubes are investigated by using a three-dimensional finite element model. The beam elements are used to simulate the P–P bonds in the structure of the phosphorene nanotubes. The elastic properties of the beam elements are computed from the similarity of energy terms in the molecular and structural mechanics. Besides, mass elements are located at the place of the atoms. Considering the zigzag phosphorene nanotubes with different diameters, it is shown that the effect of the diameter on the first natural frequencies of the nanotubes can be neglected. However, this effect increases for higher modes. Besides, at the same diameter, the zigzag phosphorene nanotubes with larger aspect ratios (length/diameter) have smaller frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014)

    Article  Google Scholar 

  2. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  ADS  Google Scholar 

  3. S.P. Koenig, R.A. Doganov, H. Schmidt, A.C. Neto, B. Oezyilmaz, Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014)

    Article  ADS  Google Scholar 

  4. Y.Y.W. Ding, L. Shi, Z. Xu, J. Ni, Anisotropic elastic behaviour and one-dimensional metal in phosphorene, physica status solidi. Rapid Res. Lett. 8, 939–942 (2014)

    Google Scholar 

  5. T. Hu, Y. Han, J. Dong, Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Nanotechnology 25, 455703 (2014)

    Article  ADS  Google Scholar 

  6. Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)

    Article  ADS  Google Scholar 

  7. L. Wang, A. Kutana, X. Zou, B.I. Yakobson, Electro-mechanical anisotropy of phosphorene. Nanoscale 7, 9746–9751 (2015)

    Article  ADS  Google Scholar 

  8. G. Wang, G.C. Loh, R. Pandey, S.P. Karna, Out-of-plane structural flexibility of phosphorene. Nanotechnology 27, 055701 (2015)

    Article  ADS  Google Scholar 

  9. C.X. Wang, C. Zhang, J.W. Jiang, H.S. Park, T. Rabczuk, Mechanical strain effects on black phosphorus nanoresonators. Nanoscale 8, 901–905 (2016)

    Article  ADS  Google Scholar 

  10. Z.D. Sha, Q.X. Pei, Z. Ding, J.W. Jiang, Y.W. Zhang, Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D Appl. Phys. 48, 395303 (2015)

    Article  Google Scholar 

  11. Z.D. Sha, Q.X. Pei, Z. Ding, J.W. Jiang, Y.W. Zhang, Atomic vacancies significantly degrade the mechanical properties of phosphorene. Nanotechnology 27, 315704 (2016)

    Article  ADS  Google Scholar 

  12. N. Liu, J. Hong, R. Pidaparti, X. Wang, Fracture patterns and the energy release rate of phosphorene. Nanoscale 8, 5728–5736 (2016)

    Article  ADS  Google Scholar 

  13. V. Sorkin, Y.W. Zhang, The structure and elastic properties of phosphorene edges. Nanotechnology 26, 235707 (2015)

    Article  ADS  Google Scholar 

  14. V. Sorkin, Y.W. Zhang, The deformation and failure behaviour of phosphorenenanoribbons under uniaxial tensile strain. 2D Mater. 2, 035007 (2015)

    Article  Google Scholar 

  15. V. Sorkin, Y.W. Zhang, Mechanical properties of phosphorene nanotubes: a density functional tight-binding study. Nanotechnology 27, 395701 (2016)

    Article  Google Scholar 

  16. X. Liao, F. Hao, H. Xiao, X. Chen, Effects of intrinsic strain on the structural stability and mechanical properties of phosphorene nanotubes. Nanotechnology 27, 215701 (2016)

    Article  ADS  Google Scholar 

  17. G. Seifert, E. Hernandez, Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 318, 355–360 (2000)

    Article  ADS  Google Scholar 

  18. I. Cabria, J.W. Mintmire, Stability and electronic structure of phosphorus nanotubes. Europhys. Lett. 65, 82–88 (2004)

    Article  ADS  Google Scholar 

  19. W. Ju, T. Li, H. Wang, Y. Yong, J. Sun, Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles. Chem. Phys. Lett. 622, 109–114 (2015)

    Article  ADS  Google Scholar 

  20. J.W. Jiang, H.S. Park, Analytic study of strain engineering of the electronic bandgap in single-layer black phosphorus. Phys. Rev. B91, 235118 (2015)

    Article  ADS  Google Scholar 

  21. X. Han, H.M. Stewart, S.A. Shevlin, C.R.A. Catlow, Z.X. Guo, Strain and orientation modulated bandgaps and effective masses of phosphorenenanoribbons. Nano Lett. 14, 4607–4614 (2014)

    Article  ADS  Google Scholar 

  22. Y. Guo, S. Zhou, J. Zhang, Y. Bai, J. Zhao, Atomic structures and electronic properties of phosphorene grain boundaries. 2D Mater. 3, 025008 (2016)

    Article  Google Scholar 

  23. R. Zhang, B. Li, J. Yang, A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene. J. Phys. Chem. C 119, 2871–2878 (2015)

    Article  Google Scholar 

  24. L.C. Xu, X.J. Song, Z. Yang, L. Cao, R.P. Liu, X.Y. Li, Phosphorene nanoribbons: passivation effect on bandgap and effective mass. Appl. Surf. Sci. 324, 640–644 (2015)

    Article  ADS  Google Scholar 

  25. Q. Wu, L. Shen, M. Yang, Y. Cai, Z. Huang, Y.P. Feng, Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 92, 035436 (2015) Author: As References [25] and [26]; [32] and [33] are same, we have deleted the duplicate reference and renumbered accordingly. Please check and confirm. From: Saeed Rouhi Sent: Sunday, March 19, 2017 3:31:47 AM (UTC+05:30) Chennai, Kolkata, Mumbai, New Delhi To: Subramaniam, Jayagopal Subject: Corrected Proof (APYA-D-16-01953.1) Article Title : A density functional theory-based finite element method to study the vibrational characteristics of zigzag phosphorene nanotubes DOI : 10.1007/s00339-017-0860-2 APYA-D-16-01953.1 Dear Editor The corrected Proof is attached. Regards Saeed Rouhi

    Article  ADS  Google Scholar 

  26. P. Dou-Xing, W. Tzu-Chiang, G. Wan-Lin, Bending-induced phase transition in monolayer black phosphorus Project supported by the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, and 11132011) and the National Basic Research Program of China (Grant No. 2012CB937500). Chin. Phys. B 24, 086401 (2015)

    Article  ADS  Google Scholar 

  27. L. Guan, G. Chen, J. Tao, Prediction of the electronic structure of single-walled black phosphorus nanotubes. Phys. Chem. Chem. Phys. 18, 15177–15181 (2016)

    Article  Google Scholar 

  28. Z.Y. Ong, Y. Cai, G. Zhang, Y.W. Zhang, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272–25277 (2014)

    Article  Google Scholar 

  29. T.H. Liu, C.C. Chang, Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale 7, 10648–10654 (2015)

    Article  ADS  Google Scholar 

  30. J.W. Jiang, Thermal conduction in single-layer black phosphorus: highly anisotropic. Nanotechnology 26, 055701 (2015)

    Article  ADS  Google Scholar 

  31. Y. Hong, J. Zhang, X. Huang, X.C. Zeng, Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with grapheme. Nanoscale 7, 18716–18724 (2015)

    Article  ADS  Google Scholar 

  32. W. Xu, G. Zhang, Remarkable reduction of thermal conductivity in phosphorene phononic crystal. J. Phys. Condens. Matter 28, 175401 (2016)

    Article  ADS  Google Scholar 

  33. F. Hao, X. Liao, H. Xiao, X. Chen, Thermal conductivity of armchair black phosphorus nanotubes: a molecular dynamics study. Nanotechnology 27, 155703 (2016)

    Article  ADS  Google Scholar 

  34. Y.Y. Zhang, Q.X. Pei, J.W. Jiang, N. Wei, Y.W. Zhang, Thermal conductivities of single-and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2016)

    Article  ADS  Google Scholar 

  35. H. Sun, G. Liu, Q. Li, X.G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus. Phys. Lett. A 380, 2098–2104 (2016)

    Article  ADS  Google Scholar 

  36. Y. Jing, Q. Tang, P. He, Z. Zhou, P. Shen, Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 26, 095201 (2015)

    Article  ADS  Google Scholar 

  37. T. Hu, A. Hashmi, J. Hong, Geometry, electronic structures and optical properties of phosphorus nanotubes. Nanotechnology 26, 415702 (2015)

    Article  ADS  Google Scholar 

  38. A. Hashmi, U. Farooq, J. Hong, Graphene/phosphorene bilayer: high electron speed, optical property and semiconductor-metal transition with electric field. Curr. Appl. Phys. 16, 318–323 (2016)

    Article  ADS  Google Scholar 

  39. L.J. Kong, G.H. Liu, Y.J. Zhang, Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6, 10919–10929 (2016)

    Article  Google Scholar 

  40. D. Çakır, H. Sahin, F.M. Peeters, Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90, 205421 (2014)

    Article  ADS  Google Scholar 

  41. H. Zheng, H. Yang, H. Wang, X. Du, Y. Yan, Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: first-principles study. J. Magn. Magn. Mater. 408, 121–126 (2016)

    Article  ADS  Google Scholar 

  42. L. Viti, J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, S.M. Vitiello, Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv. Mater. 34, 7293 (2016)

    Google Scholar 

  43. L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M.S. Vitiello, Black phosphorus terahertz photodetectors. Adv. Mater. 27, 5567–5572 (2015)

    Article  Google Scholar 

  44. D. Wang, G.C. Guo, X.L. Wei, L.M. Liu, S. Zhao, Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries. J. Power Sources 302, 215–222 (2016)

    Article  ADS  Google Scholar 

  45. Z. Jingxiang, Y. Yang, R.S. Katiyar, Z. Chen, Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study. J. Mater. Chem. A 4, 6124–6130 (2016)

    Article  Google Scholar 

  46. S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2, 19046–19052 (2014)

    Article  Google Scholar 

  47. V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015)

    Article  Google Scholar 

  48. N. Suvansinpan, F. Hussain, G. Zhang, C.H. Chiu, Y. Cai, Y.W. Zhang, Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27, 065708 (2016)

    Article  ADS  Google Scholar 

  49. M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9, 709–728 (2016)

    Article  Google Scholar 

  50. H. Du, Xi.. Lin, Z. Xu, D. Chu, Recent developments in black phosphorus transistors. J. Mater. Chem. C 3, 8760–8775 (2015)

    Article  Google Scholar 

  51. C. Li, T.W. Chou, Single-walled nanotubes as ultra high frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)

    Article  ADS  Google Scholar 

  52. J.A. Roberts, T. Imholt, Z. Ye, C.A. Dyke, D.W. Price, J.M. Tour, Electro-magnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe. J. Appl. Phys. 95(8), 4352–4356 (2004)

    Article  ADS  Google Scholar 

  53. M. Dequesnes, Z. Tang, N.R. Aluru, Static and dynamic analysis of carbon nanotube-based switches. J. Eng. Mater. Technol. 126, 230–237 (2004)

    Article  Google Scholar 

  54. P. Dharap, Z. Li, S. Nagarajaiah, E.V. Barrera, Nanotube film based on singlewalled carbon nanotubes for strain sensing. Nanotechnology 15, 379–382 (2004)

    Article  ADS  Google Scholar 

  55. C.K.M. Fung, M.Q.H. Zhang, R.H.M. Chan, W.J. Li, A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements. Proc. MEMS 251–254 (2005)

  56. R.J. Grow, Q. Wang, J. Cao, D. Wang, H. Dai, Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86, 93104–93107 (2005)

    Article  ADS  Google Scholar 

  57. M. Nishio, S. Sawaya, S. Akita, Y. Nakayama, Carbon nanotube oscillators towards zeptogram detection. Appl. Phys. Lett. 86(1–3), 133111 (2005)

    Article  ADS  Google Scholar 

  58. S.J. Papadakis, A.R. Hall, P.A. Williams, L. Vicci, M.R. Falvo, R. Superfine, S. Washburn, Resonant oscillators with carbon-nanotube torsion springs. Phys. Rev. Lett. 93(14), 146101 (2004). (1–4)

    Article  ADS  Google Scholar 

  59. R. Ansari, S. Rouhi, M. Aryayi, Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum. Appl. Math. Mech. 34, 1187–1200 (2013)

    Article  MathSciNet  Google Scholar 

  60. G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise, Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  61. B.R. Gelin, Molecular modeling of polymer structures and properties. Hanser Publishers; Hanser/Gardner Publications, Munich (1994)

  62. T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  ADS  MATH  Google Scholar 

  63. R. Ansari, S. Rouhi, Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Phys. E Low-dimens. Syst. Nanostruct. 43(2010)58–69

    Article  ADS  Google Scholar 

  64. S. Rouhi, R. Ansari, Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Phys. E Low-dimens. Syst. Nanostruct. 44, 764–772 (2012)

    Article  ADS  Google Scholar 

  65. R. Ansari, S. Rouhi, M. Aryayi, M. Mirnezhad, On the buckling behavior of single-walled silicon carbide nanotubes. ScientiaIranica 19, 1984–1990 (2012)

    Google Scholar 

  66. R. Ansari, S. Rouhi, M. Mirnezhad, M. Aryayi, Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression. Phys. E Low-dimens. Syst. Nanostruct. 53, 22–28 (2013)

    Article  ADS  Google Scholar 

  67. R. Ansari, S. Rouhi, M. Mirnezhad, M. Aryayi, Stability characteristics of single-walled boron nitride nanotubes. Arch. Civil Mech. Eng. 15, 162–170 (2015)

    Article  Google Scholar 

  68. R. Ansari, A. Shahnazari, S. Rouhi, A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes. Phys. E Low-dimens. Syst. Nanostruct. 88, 272–278 (2017)

    Article  ADS  Google Scholar 

  69. C. Li, T.W. Chou, Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 5246–5248 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or S. Rouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnazari, A., Ansari, R. & Rouhi, S. A density functional theory-based finite element method to study the vibrational characteristics of zigzag phosphorene nanotubes. Appl. Phys. A 123, 263 (2017). https://doi.org/10.1007/s00339-017-0860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0860-2

Keywords

Navigation