Skip to main content

Advertisement

Log in

Thermally chargeable supercapacitor working in a homogeneous, changing temperature field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A thermally chargeable supercapacitor (TCS) system is developed to harvest electrical energy from a uniform temperature field of a changing low-grade heat source. Without any temperature gradient, the TCS absorbs heat when temperature rises and releases electricity during discharging. As temperature decreases, the system configuration returns to the initial condition, so that the thermal-to-electrical energy conversion can be continuously conducted. With a nickel-coated carbon nanotube or nanoporous carbon-based electrode, the thermal sensitivity and the electrode surface area are enhanced simultaneously, leading to a high output voltage around 100–160 mV and a high specific energy of 600–1800 mJ per gram of electrode material in each thermal cycle, with a mild temperature range of ~50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.F. Tchanche, G. Lambrinos, A. Frangoudakis, G. Papadakis, Low-grade heat conversion into power using organic Rankine cycles–a review of various applications. Renew. Sustain. Energy Rev. 15, 3963–3979 (2011)

    Article  Google Scholar 

  2. G. Nolas, J. Sharp, H. Goldsmid, Thermoelectrics: Basics Principles and New Materials Developments (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  3. T. Wang, Y. Zhang, Z. Peng, G. Shu, A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sustain. Energy Rev. 15, 2862–2871 (2011)

    Article  Google Scholar 

  4. W. Husband, A. Beyene, Low-grade heat-driven Rankine cycle, a feasibility study. Int. J. Energy Res. 32, 1373–1382 (2008)

    Article  Google Scholar 

  5. R. Lasseter, P. Paigi, Microgrid: a conceptual solution, in 35th Annual IEEE Power Electronics Specialisrs Conference (2004), pp. 2521–2525

  6. D. Tanner, Ocean thermal energy conversion: current overview and future outlook. Renew. Energy 6, 367–373 (1995)

    Article  Google Scholar 

  7. D.L. Ermak, R.A. Nyholm, P.H. Gudiksen, Potential air quality impacts of large-scale geothermal energy development in the Imperial Valley. Atmos. Environ. 14, 1321–1330 (1980)

    Article  ADS  Google Scholar 

  8. F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)

    Article  ADS  Google Scholar 

  9. I. Sur, A. Casian, A. Balandin, Electronic thermal conductivity and thermoelectric figure of merit of n-type PbTe/Pb1− xEuxTe quantum wells. Phys. Rev. B 69, 035306.1-7 (2004)

    Article  ADS  Google Scholar 

  10. Y. Qiao, V.K. Punyamurtual, A. Han, H. Lim, Thermal-to-electric energy conversion of a nanoporous carbon. J. Power Sources 183, 403–405 (2008)

    Article  Google Scholar 

  11. H. Lim, C. Zhao, Y. Qiao, Performance of thermally-chargeable supercapacitors in different solvents. Phys. Chem. Chem. Phys. 16, 12728–12730 (2014)

    Article  Google Scholar 

  12. H. Lim, W. Lu, X. Chen, Y. Qiao, Effects of ion concentration on thermally-chargeable double-layer supercapacitors. Nanotechnology 24, 465401.1-5 (2013)

    Google Scholar 

  13. H. Lim, W. Lu, Y. Qiao, Dependence on cation size of thermally induced capacitive effect of a nanoporous carbon. Appl. Phys. Lett. 101, 063902.1-4 (2012)

    Google Scholar 

  14. H. Lim, W. Lu, X. Chen, Y. Qiao, Anion size effect on electrode potential in a nanoporous carbon. Int. J. Electrochem. Sci. 7, 2577–2583 (2012)

    Google Scholar 

  15. Lim H, Recycling of Wasted Energy: Thermal to Electric Energy Conversion. Ph.D. Thesis, University of California, San Diego, 2011

  16. S.W. Lee, Y. Yang, H.W. Lee, H. Ghasemi, D. Kraemer, G. Chen, Y. Cui, An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942.1-6 (2014)

    Google Scholar 

  17. Y. Yang, S.W. Lee, H. Ghasemi, J. Loomis, X. Li, D. Kraemer, G. Chen, Charging-free electrochemical system for harvesting low-grade thermal energy. Proc. Natl. Acad. Sci. 111, 17011–17016 (2014)

    Article  ADS  Google Scholar 

  18. T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, P. Simon, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 173, 633–641 (2007)

    Article  Google Scholar 

  19. S.E. Larsen, J. Højstrup, C.H. Gibson, Fast-Response Temperature Sensors. Air-Sea Interaction (Springer, Newyork, 1980), pp. 269–292

    Book  Google Scholar 

  20. T. Kim, W. Lu, H. Lim, A. Han, Y. Qiao, Electrically controlled hydrophobicity in a surface modified nanoporous carbon. Appl. Phys. Lett. 98, 053106.1-3 (2011)

    Google Scholar 

  21. S. Arai, M. Kobayashi, T. Yamamoto, M. Endo, Pure-nickel-coated multiwalled carbon nanotubes prepared by electroless deposition. Electrochem. Solid State Lett. 13, D94–D96 (2010)

    Article  Google Scholar 

  22. H. Lim, Y. Shi, M. Wang, Y. Qiao, Effects of work function on thermal sensitivity of electrode potential. Appl. Phys. Lett. 106, 223901.1-3 (2015)

    Article  Google Scholar 

  23. J. Goodisman, Electrochemistry: Theoretical Foundations (Wiley, London, 1987)

    Google Scholar 

  24. LF Deis, CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  25. X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)

    Article  ADS  Google Scholar 

  26. A. Gunawan, C.H. Lin, D.A. Buttry, V. Mujica, R.A. Taylor, R.S. Prasher, P.E. Phelan, Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments. Nanoscale Microscale Thermophys. Eng. 17, 304–323 (2013)

    Article  Google Scholar 

  27. W. Lu, T. Kim, C. Zhao, X. Chen, Y. Qiao, Modified infiltration of solvated ions and ionic liquid in a nanoporous carbon. Appl. Phys. A Mater. Sci. Proc. 112, 885–889 (2013)

    Article  ADS  Google Scholar 

  28. W. Lu, A. Han, T. Kim, Y. Qiao, Effect of 16-mercaptohexadecanoic acid modification on liquid transport in a nanoporous carbon. Appl. Phys. Lett 94, 223120.1-3 (2009)

    Google Scholar 

  29. V.K. Punyamurtula, A. Han, Y. Qiao, An experimental investigation on a nanoporous carbon functionalized liquid damper. Phil. Mag. Lett. 86, 829–835 (2006)

    Article  ADS  Google Scholar 

  30. V.K. Punyamurtula, Y. Qiao, Hysteresis of sorption isotherm of a multiwall carbon nanotube in paraxylene. Mater. Res. Innov. 11, 37–39 (2007)

    Article  Google Scholar 

  31. B. Xu, X. Chen, W. Lu, C. Zhao, Y. Qiao, Non-dissipative energy capture of confined liquid in nanopores. Appl. Phys. Lett 104, 203107.1-4 (2014)

    Google Scholar 

  32. H. Li, X. Xu, Y. Qiao, An experimental investigation on fluidic behaviors in a two-dimensional nanoenvironment. J. Appl. Phys. 114, 044302.1-6 (2013)

    Google Scholar 

  33. Y. Qiao, X. Xu, H. Li, Conduction of water molecules through graphene bilayer. Appl. Phys. Lett 103, 233106.1-3 (2013)

    Google Scholar 

Download references

Acknowledgments

The experimental research was supported by the National Science Foundation under Grant No. ECCS-1028010. The data analysis was supported by the Advanced Research Projects Agency–Energy under Grant No. DE-AR0000396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H., Shi, Y. & Qiao, Y. Thermally chargeable supercapacitor working in a homogeneous, changing temperature field. Appl. Phys. A 122, 443 (2016). https://doi.org/10.1007/s00339-016-9981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9981-2

Keywords

Navigation