Skip to main content
Log in

Composite-hydroxide-mediated approach an effective synthesis route for BaTiO3 functional nanomaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper describes synthesis of the functional BaTiO3 (BT) nanostructures by composite-hydroxide-mediated (CHM) approach. The effect of processing temperature on the nucleation and the optical, structural properties is investigated. The nanostructures prepared at various temperatures (180, 220 and 250 °C) are thermally stable and nucleate in different morphologies, which shows a temperature-dependent mechanism of the CHM approach. The nanostructures are cubic in nature with an average particle size in the range of 97–250 nm. The local crystal structure investigated by Raman spectroscopy reveals a certain degree of tetragonality on atomic scale in the local phase structure. The micrographs of scanning electron microscopy (SEM) indicate formation of the nanocuboids at 180 and 220 °C with larger particle size. At 250 °C, the product shows ball-like spherical morphology. Energy-dispersive X-ray (EDX) confirms the existence of Ba, Ti and O elements in the product, which indicates a chemically pure product. Further signature on the formation, purity and chemical bonding is obtained from FT-IR spectroscopy. Based on these experimental results, size, morphology manipulation and possible growth mechanisms are proposed with CHM at low temperature and without surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  2. S.-T. Huang, W.W. Lee, J.-L. Chang, W.-S. Huang, S.-Y. Chou, C.-C. Chen, J. Taiwan Inst. Chem. Eng. 45(4), 1927–1936 (2014)

    Article  Google Scholar 

  3. J. Miao, C. Hu, H. Liu, Y. Xiong, Mater. Lett. 62, 235–238 (2008)

    Article  Google Scholar 

  4. W.W. Lee, C.-S. Lu, C.-W. Chuang, Y.-J. Chen, J.-Y. Fu, C.-W. Siao, C.-C. Chen, RSC Adv. 5, 23450–23463 (2015)

    Article  Google Scholar 

  5. Y.-R. Jiang, S.-Y. Chou, J.-L. Chang, S.-T. Huang, H.-P. Lin, C.-C. Chen, RSC Adv. 5, 30851–30860 (2015)

    Article  Google Scholar 

  6. X.H. Zhu, J.M. Zhu, S.H. Zhou, Z.G. Liu, N.B. Ming, D. Hesse, Solid State Phenom. 106, 41–46 (2005)

    Article  Google Scholar 

  7. U. Manzoor, D.K. Kim, J. Mater. Sci. Technol. 23, 655–658 (2007)

    Google Scholar 

  8. W.W. Lee, W.-H. Chung, W.-S. Huang, W.-C. Lin, W.-Y. Lin, Y.-R. Jiang, C.-C. Chen, J. Taiwan Inst. Chem. Eng. 44(4), 660–669 (2013)

    Article  Google Scholar 

  9. J.-H. Park, D.H. Yoo, B.K. Moon, G.-J. Jung, J. Korean Phys. Soc. 49, S680–S683 (2006)

    Google Scholar 

  10. T.M. Khan, T. Shahid, M. Zakria, R.I. Shakoor, J Electron Mater Lett 11, 366–373 (2015)

    Article  ADS  Google Scholar 

  11. T.M. Khan, M. Zakria, R.I. Shakoor, M. Ahmad, M. Raffi, Advanced Materials Lett 6, 592–599 (2015)

    Google Scholar 

  12. C. Hu, Y. Xi, H. Liu, Z.L. Wang, J. Mater. Chem. 19, 858–868 (2009)

    Article  Google Scholar 

  13. J. Miao, C. Hu, H. Liu, Y. Xiong, Mater. Lett. 62, 235–238 (2008)

    Article  Google Scholar 

  14. R.L. Brutchey, D.E. Morse, Angew. Chem. Int. Ed. 45, 6564–6566 (2006)

    Article  Google Scholar 

  15. M.R.A. Bhuiyan, M.M. Alam, M.A. Momin, M.J. Uddin, M. Islam, Int. J. Mater. Mech. Eng. 1, 21–24 (2012)

    Google Scholar 

  16. Y. Mao, S. Mao, Z.-G. Ye, Z. Xie, L. Zheng, Mater. Chem. Phys. 124, 1232–1238 (2010)

    Article  Google Scholar 

  17. M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)

    Article  Google Scholar 

  18. M. El Marssi, F. Le Marrec, I.A. Lukyanchuk, M.G. Karkut, J. Appl. Phys. 94, 3307–3312 (2003)

    Article  ADS  Google Scholar 

  19. G. Busca, G. Ramis, J.M. Gallardo Amores, V. Sanchez Escribano, P. Piaggio, J. Chem. Soc. Faraday Trans. 90, 3181–3190 (1994)

    Article  Google Scholar 

  20. M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, E. Longo, J.A. Varela, Chem. Mater. 20, 5381–5387 (2008)

    Article  Google Scholar 

  21. E.A. Stefanescu, X. Tan, Z. Lin, N. Bowler, M.R. Kessler, Polymer 52, 2016–2024 (2011)

    Article  Google Scholar 

  22. X. Wei, G. Xu, Z. Ren, G. Shen, G. Han, J. Am. Ceram. Soc. 91, 3774–3780 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Health Physics Division (PINSTECH) for providing the required infrastructure and facilities for this research work. We are also thankful to Dr. M. Nasir khan (PINSTECH) for performing XRD analysis. The chemicals and furnace were also provided by the PINSTECH Health Physics Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taj Muhammad Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.M., Zakria, M., Shakoor, R.I. et al. Composite-hydroxide-mediated approach an effective synthesis route for BaTiO3 functional nanomaterials. Appl. Phys. A 122, 274 (2016). https://doi.org/10.1007/s00339-016-9766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9766-7

Keywords

Navigation