Skip to main content
Log in

Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Colour centres in KBr and defects in silica glass were formed by focused femtosecond laser pulses. It is shown that under simple laser exposure, KBr develops a similar colouration as that achieved with electron and ion bombardment or high-energy X-ray irradiation. The three-dimensional (3D) character of direct laser writing in the volume of KBr allows a new level of control in the spatial arrangement of colour centres and defects. Five different colour centres were identified in KBr through the absorption spectrum; they have different charge and vacancy distribution configurations. The densities of the V- and F-centres were estimated to be 3.9 × 1019 and 3.4 × 1019 cm−3 using Smakula’s formula. In silica, a high density of paramagnetic E′ centres ~1.9 × 1020 cm−3 was determined by quantitative electron spin resonance spectroscopy. Birefringence due to colour centres and laser-induced defects was measured using Stokes polarimetry. In the case of colour centres in KBr, retardation in excess of 0.05\(\pi\) was determined throughout the visible spectrum from 400 to 800 nm. The use of polariscopy for analysis of high-pressure and high-temperature phase formation induced by 3D laser structuring is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348(6242), 455–1460 (2015)

    Article  Google Scholar 

  2. P.F. McMillan, New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002)

    Article  ADS  Google Scholar 

  3. A. Gleason, C. Bolme, H. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. Kraus, J. Eggert, D. Fratanduono, G. Collins, R. Sandberg, W. Yang, W. Mao, Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015)

    Article  ADS  Google Scholar 

  4. L. Rapp, B. Haberl, C. Pickard, J. Bradby, E. Gamaly, J. Williams, A. Rode, Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 7555 (2015)

    Article  ADS  Google Scholar 

  5. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A. Rode, S. Juodkazis, Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion. Nat. Commun. 2, 445 (2011)

    Article  ADS  Google Scholar 

  6. R. Drake, High-energy-density physics. Phys. Today 63, 28–33 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Ono, A.R. Oganov, T. Koyama, H. Shimizu, Stability and compressibility of high-pressure phase of Al2O3 up to 200 GPa: implications for electrical conductivity at the base of the lower mantle. Earth Planet. Sci. Lett. 246, 326–335 (2006)

    Article  ADS  Google Scholar 

  8. A.R. Oganov, S. Ono, The high pressure phase of alumina and implications for Earth’s D layer. Proc. Natl. Acad. Sci. 102, 10828–10831 (2005)

    Article  ADS  Google Scholar 

  9. L.B. Fletcher, H.J. Lee, T. Döppner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D.A. Chapman, D.O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R.W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J.B. Hastings, S.H. Glenzer, Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photonics 9, 274–279 (2015)

    ADS  Google Scholar 

  10. Y. Xu, T.J. Shankland, B.T. Poe, Laboratory-based electrical conductivity in the Earth’s mantle. J. Geophys. Res. 105, 27865–27875 (2000)

    Article  ADS  Google Scholar 

  11. Y. Shimotsuma, P. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 1–4 (2003)

    Article  Google Scholar 

  12. C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett. 106, 123901 (2011)

    Article  ADS  Google Scholar 

  13. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26(5), 277–279 (2001)

    Article  ADS  Google Scholar 

  14. M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98(20), 201101 (2011)

    Article  ADS  Google Scholar 

  15. O.M. Efimov, K. Gabel, S.V. Garnov, L.B. Glebov, S. Grantham, M. Richardson, M.J. Soileau, Color-center generation in silicate glasses exposed to infrared femtosecond pulses. J. Opt. Soc. Am. B 15, 193 (1998)

    Article  ADS  Google Scholar 

  16. J. Dickinson, S. Orlando, S. Avanesyan, S. Langford, Color center formation in soda lime glass and NaCl single crystals with femtosecond laser pulses. Appl. Phys. A 79, 859–864 (2004)

    Article  ADS  Google Scholar 

  17. L.C. Courrol, R.E. Samad, L. Gomez, I.M. Ranieri, S.L. Baldochi, A.Z. de Freitas, N.D. Vieira, Color center production by femtosecond pulse laser irradiation in LiF crystals. Opt. Express 12(2), 288 (2004)

    Article  ADS  Google Scholar 

  18. G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A Pure Appl. 11, 013001 (2009)

    Article  ADS  Google Scholar 

  19. Y. Bellouard, A.A. Said, P. Bado, Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica. Opt. Express 13(17), 6635 (2005)

    Article  ADS  Google Scholar 

  20. T. Sugiyama, H. Fujiwara, T. Suzuki, K. Tanimura, Femtosecond time-resolved spectroscopy of self-trapping processes of holes and electron-hole pairs in alkali bromide crystals. Phys. Rev. B 54, 15109–15119 (1996)

    Article  ADS  Google Scholar 

  21. J.B. Lonzaga, S.M. Avanesyan, S.C. Langford, J.T. Dickinson, Color center formation in soda-lime glass with femtosecond laser pulses. J. Appl. Phys. 94, 4332 (2003)

    Article  ADS  Google Scholar 

  22. J. Dickinson, S. Langford, S. Avanesyan, S. Orlando, Color center formation in KCl and KBr single crystals with femtosecond laser pulses. Appl. Surf. Sci. 253, 7874–7878 (2007)

    Article  ADS  Google Scholar 

  23. L.I. Bryukvina, S.V. Lipko, V. Kuznetsov, E.F. Martynovich, Structural changes accompanying color center formation in lithium fluoride exposed to femtosecond laser pulses. Inorg. Mater. 50, 625–630 (2014)

    Article  Google Scholar 

  24. M. Watanabe, H.-B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, H. Misawa, Three-dimensional optical data storage in vitreous silica. Jpn. J. Appl. Phys. 27(12B), L1527–L1530 (1998)

    Article  Google Scholar 

  25. H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J. Phys. Chem. B 2000(104), 3450–3455 (2000)

    Article  Google Scholar 

  26. E.J. Caine, Optical data storage in LiF using electron beam encoding. J. Vac. Sci. Technol. B 16, 3232 (1998)

    Article  Google Scholar 

  27. V.V. Ter-Mikirtychev, T. Tsuboi, Stable room-temperature tunable color center lasers and passive Q-switchers. Prog. Quantum Electron. 20, 219–268 (1996)

    Article  ADS  Google Scholar 

  28. L. Nony, E. Gnecco, A. Baratoff, A. Alkauskas, R. Bennewitz, O. Pfeiffer, S. Maier, A. Wetzel, E. Meyer, C. Gerber, Observation of individual molecules trapped on a nanostructured insulator. Nano Lett. 4, 2185–2189 (2004)

    Article  ADS  Google Scholar 

  29. J.-E. Nimsch, J. Wachtveitl, LiF, an underestimated supercontinuum source in femtosecond transient. Opt. Express 21(14), 17060–17065 (2013)

    Article  ADS  Google Scholar 

  30. K. Ambal, A. Payne, D.P. Waters, C.C. Williams, C. Boehme, Spin-relaxation dynamics of E′ centers at high density in SiO2 thin films for single-spin tunneling force microscopy. Phys. Rev. Appl. 4, 024008 (2015)

    Article  ADS  Google Scholar 

  31. D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, O. Utéza, Long-wavelength multiphoton ionization inside band-gap solids. Phys. Rev. B 88, 195135 (2013)

    Article  ADS  Google Scholar 

  32. H.G. Berry, G. Gabrielse, A.E. Livingston, Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200 (1977)

    Article  ADS  Google Scholar 

  33. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, W. Krolokowski, Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal. Phys. Rev. B 81(5), 054113 (2010)

    Article  ADS  Google Scholar 

  34. T. Kudrius, G. Šlekys, S. Juodkazis, Surface-texturing of sapphire by femtosecond laser pulses for photonic applications. J. Phys. D Appl. Phys. 43(14), 145501 (2010)

    Article  ADS  Google Scholar 

  35. F. Seitz, Color centers in alkali halide crystals. II. Rev. Mod. Phys. 26, 7–94 (1954)

    Article  ADS  Google Scholar 

  36. H. Ivey, Spectral location of the absorption due to color centers in alkali halide crystals. Phys. Rev. 72, 341–343 (1947)

    Article  ADS  Google Scholar 

  37. R. Casler, P. Pringsheim, P. Yuster, V-centers in alkali halides. J. Chem. Phys. 18(12), 1564 (1950)

    Article  ADS  Google Scholar 

  38. T.J. Neubert, S. Susman, M centers in potassium bromide. I. J. Chem. Phys. 43(8), 2819 (1965)

    Article  ADS  Google Scholar 

  39. D.Y. Smith, G. Graham, Oscillator strengths of defects in insulators: the generalization of Smakula’s equation. J. Phys. Colloq. 41(C6), 80–83 (1980)

    Article  Google Scholar 

  40. S. Juodkazis, Optical properties of femtosecond irradiated photo-thermo-refractive glass. Lith. J. Phys. 42(2), 119–126 (2002)

    Google Scholar 

  41. S.C. Jain, V.K. Jain, Optical and thermal stability, half-widths and oscillator strengths of f-aggregate bands in highly pure kbr crystals. J. Phys. C Solid State Phys. 1(4), 895 (1968)

    Article  ADS  Google Scholar 

  42. G. Petite, P. Daguzan, S. Guizard, P. Martin, Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study. Nucl. Instrum. Methods Phys. Res. B 107(1–4), 97–101 (1996)

    Article  ADS  Google Scholar 

  43. H. Hosono, Y. Abe, H. Imagawa, H. Imai, K. Arai, Experimental evidence for the Si–Si bond model of the 7.6 eV band in glass. Phys. Rev. B 44(21), 12043–12045 (1991)

    Article  ADS  Google Scholar 

  44. M. Cannas, F.M. Gelardi, F. Pullara, M. Barbera, A. Collura, S. Varisco, Absorption band at 7.6 eV induced by λ-irradiation in silica glasses. J. Non-Cryst. Solids 280, 188–192 (2001)

    Article  ADS  Google Scholar 

  45. H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, M. Hirano, Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2. Phys. Rev. Lett. 87, 175501 (2001)

    Article  ADS  Google Scholar 

  46. K. Kajihara, L. Skuja, M. Hirano, H. Hosono, Oxygen-excess amorphous SiO2 with 18O-labeled interstitial oxygen molecules. J. Non-Cryst. Solids 345–346, 219–223 (2004)

    Article  Google Scholar 

  47. E.J. Friebele, D.L. Griscom, M. Stapelbroek, Fundamental defect centres in glass: the peroxy radical in irradiated, high purity silica. Phys. Rev. Lett. 42, 1346–1349 (1979)

    Article  ADS  Google Scholar 

  48. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica. Phys. Rev. B 60(14), 9959–9964 (1999)

    Article  ADS  Google Scholar 

  49. L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, H. Hosono, Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping. J. Non-Cryst. Solids 345–346, 328–331 (2004)

    Article  Google Scholar 

  50. H. Hosono, M. Mizuguchi, H. Kawazoe, T. Ogawa, Effects of fluorine dimer excimer laser radiation on the optical transmission and defect formation of various types of synthetic SiO2 glasses. Appl. Phys. Lett. 74, 2755–2757 (1999)

    Article  ADS  Google Scholar 

  51. K. Kajihara, M. Hirano, L. Skuja, H. Hosono, Intrinsic defect formation in amorphous SiO2 by electronic excitation: bond dissociation versus Frenkel mechanisms. Phys. Rev. B 78, 094201 (2008)

    Article  ADS  Google Scholar 

  52. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)

    Article  ADS  Google Scholar 

  53. J. Morikawa, A. Orie, T. Hashimoto, S. Juodkazis, Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire. Opt. Express 18(8), 8300–8310 (2010)

    Article  ADS  Google Scholar 

  54. M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, S. Juodkazis, Three-dimensional modeling of the heat-affected zone in laser machining applications. Laser Chem. 2008, 976205/1–6 (2008)

    Article  Google Scholar 

  55. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, S. Juodkazis, Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect. Opt. Mater. Express 1, 1150–1158 (2011)

    Article  Google Scholar 

  56. K.E. Peiponen, A. Vaittinen, Light-induced refractive index change in some F coloured alkali halide crystals. J. Phys. C Solid State Phys. 15(13), L415 (1982)

    Article  ADS  Google Scholar 

  57. K. Rademaker, Rare Earth-Doped Alkali-Lead-Halide Laser Crystals of Low-phonon Energy (Cuvillier Verlag, Goettingen, 2005)

    Google Scholar 

  58. M. Velázquez, A. Ferrier, J.-L. Doualan, R. Moncorgé, Rare-Earth-Doped Low Phonon Energy Halide Crystals for Mid-Infrared Laser Sources, in Solid State Lasers, ed. by A. Al-Khursan (Intechopen, 2012)

  59. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, H. Misawa, Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation. Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008)

    Article  Google Scholar 

  60. R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron. 38, 119–156 (2014)

    Article  ADS  Google Scholar 

  61. C.J. de Jong, A. Lajevardipour, M. Gecevičius, M. Beresna, G. Gervinskas, P.G. Kazansky, Y. Bellouard, A.H.A. Clayton, S. Juodkazis, Deep-UV uorescence lifetime imaging microscopy. Photonics Res. 3(5), 283–288 (2015)

    Article  Google Scholar 

  62. S. Richter, D. Möncke, F. Zimmermann, E.I. Kamitsos, L. Wondraczek, A. Tünnermann, S. Nolte, Ultrashort pulse induced modifications in ULE—from nanograting formation to laser darkening. Opt. Mat. Express 5(8), 1834–1850 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

SJ is grateful for partial support via the Australian Research Council Discovery Project DP130101205 and fs-laser fabrication set-up via a technology transfer project with Altechna Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Juodkazis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.W., Buividas, R., Funabiki, F. et al. Analysis of defects patterned by femtosecond pulses inside KBr and SiO2 glass. Appl. Phys. A 122, 194 (2016). https://doi.org/10.1007/s00339-016-9647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9647-0

Keywords

Navigation