Skip to main content
Log in

Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline M-type hexagonal strontium hexaferrite (SrFe12O19) was prepared by conventional ceramic route (LG SrM) and auto combustion (SG SrM) method. The single-phase pattern and well grain growth was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The average crystalline size is found to be 41.35 nm in LG SrM, while that of SG SrM is 36.87 nm. In this report, the electric transport behavior of LG SrM and SG SrM (SrFe12O19) was successfully investigated and the analysis is done in the frequency range 100 Hz to 1 MHz at temperature 30–200 °C. The relaxation behavior was examined by considering the impedance and modulus formalism in order to investigate the grain and grain boundary and surface polarization conduction process. The magnetic properties such as saturation magnetization, remanence, coercivity and anisotropy field are calculated from the hysteresis loop measurement. It was found that the saturation magnetization gets increased in LG SrM as compared to SG SrM system while the coercivity of SG SrM is greater than that of LG SrM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Smit, H.P.J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (N.V. Philips Gloeilampenfabrickon, Eindhoven, 1959)

    Google Scholar 

  2. E.E. Riches, Ferrites (Mills, Boon Technical Library, London, 1972)

    Google Scholar 

  3. J. Kracch, M.H. Grant, Encyclopedia of Chemical Technology, 4th edn. (Wiley, Hoboken, 1993)

    Google Scholar 

  4. A. Hooda, S. Sanghi, A. Agarwal, R. Dahiya, J. Magn. Magn. Mater. 387, 46–52 (2015)

    Article  ADS  Google Scholar 

  5. M.J. Iqbal, M. Naeem Ashiq, P. Hernandez-Gomez, J.M. Munoz, J. Magn. Magn. Mater. 320, 881–886 (2008)

    Article  ADS  Google Scholar 

  6. Q. Fang, H. Cheng, K. Huang, J. Wang, R. Li, Y. Jiao, J. Magn. Magn. Mater. 294, 281–286 (2005)

    Article  ADS  Google Scholar 

  7. T.T.V. Nga, N.P. Duong∗, T.D. Hien, J. Alloys Compd. 475, 55–59 (2009)

    Article  Google Scholar 

  8. N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, J. Alloys Compd. 451, 492–496 (2008)

    Article  Google Scholar 

  9. P.G. Bercoff, C. Herme, S.E. Jacobo, J. Magn. Magn. Mater. 321, 2245–2250 (2009)

    Article  ADS  Google Scholar 

  10. L. Qiao, L. You, J. Zheng, L. Jiang, J. Sheng, J. Magn. Magn. Mater. 318, 74–78 (2007)

    Article  ADS  Google Scholar 

  11. J.F. Wang, C.B. Ponton, R. Grössinger, I.R. Harris, J. Alloys Compd. 369, 170–177 (2004)

    Article  Google Scholar 

  12. M.J. Iqbal*, M. Naeem Ashiq, Scripta Materialia 56, 145–148 (2007)

    Article  Google Scholar 

  13. M.J. Iqbal, M. Naeem Ashiq, P.H. Gomez, J. Alloys Compd. 478, 736–740 (2009)

    Article  Google Scholar 

  14. M. Javed Iqbal, M. Naeem Ashiq, P. Hernandez-Gomez, J.M. Munozb, ScriptaMaterialia 57, 1093–1096 (2007)

    Google Scholar 

  15. M. Naeem Ashiq, M. Javed Iqbal, I. Hussain Gul, J. Alloys Compd. 487, 341–345 (2009)

    Article  Google Scholar 

  16. M. Javed Iqbal, M. Naeem Ashiq, I. Hussain Gul, J. Magn. Magn. Mater. 322, 1720–1726 (2010)

    Article  ADS  Google Scholar 

  17. B. Want, B.H. Bhat, B.Z. Ahmad, J. Alloys Compd. 627, 78–84 (2015)

    Article  Google Scholar 

  18. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)

    Article  ADS  Google Scholar 

  19. M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Grac, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Article  ADS  Google Scholar 

  20. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiments and Applications, 2nd edn. (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  21. R. Pattanayak, S. Panigrahi, T. Dash, R. Muduli, D. Behera, Phys. B 474, 57–63 (2015)

    Article  ADS  Google Scholar 

  22. J. Ross Macdonald (ed.), Impedance Spectroscopy (Wiley, NewYork, 1987)

    Google Scholar 

  23. R.K. Panda, R. Muduli, D. Behera, J. Alloys Compd. 634, 239–245 (2015)

    Article  Google Scholar 

  24. C.G. Koops, Phys. Rev. 83[1], 121–124 (1951)

    Article  ADS  Google Scholar 

  25. D. Ravinder, P. Vijaya, B. Reddy, Mater. Lett. 57, 4344–4350 (2003)

    Article  Google Scholar 

  26. A.M. Shaikh, S.S. Belled, B.K. Chougule, J. Magn. Magn. Mater. 195, 384–390 (1999)

    Article  ADS  Google Scholar 

  27. K.W. Wagner, Ann. Phys. 40, 817–819 (1973)

    Google Scholar 

  28. V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Ceram. Int. 39, 5713–5723 (2013)

    Article  Google Scholar 

  29. N. Rezlescu, E. Rezlescu, Phys. Status Solidi. A 23, 575 (1974)

    Article  ADS  Google Scholar 

  30. D.K. Mahato, A. Dutta, T.P. Sinha, Solid State Sci. 14, 21–25 (2012)

    Article  ADS  Google Scholar 

  31. W. Li, R.W. Schwartza, Appl. Phys. Lett. 89, 242906 (2006)

    Article  ADS  Google Scholar 

  32. A.K. Jonscher, Nature (London) 264, 673 (1977)

    Article  ADS  Google Scholar 

  33. R. Pattanayak, R. Muduli, R.K. Panda, T. Dash, P. Sahu, S. Raut, S. Panigrahi, Phys. B 485, 67–77 (2016)

    Article  ADS  Google Scholar 

  34. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 42, 165005 (2009)

    Article  ADS  Google Scholar 

  35. N. Ortega, Ashok Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  ADS  Google Scholar 

  36. Q.Q. Fanga, H.W. Bao, D.M. Fang, J.Z. Wang, X.G. Li, J. Magn. Magn. Mater. 278, 122–126 (2004)

    Article  ADS  Google Scholar 

  37. JeevanJalli, Yang-Ki Hong, Sung-Hoon Gee, SeokBae, Jaejin Lee, J. C. Sur, Gavin S. Abo, Andrew Lyle, Sung-Ik Lee, Hwachol Lee, and Tim Mewes, IEEE Transactions on Magnetics, vol. 44, no. 11, november 2008

  38. J. Dho, E.K. Lee, J.Y. Park, N.H. Hur, J. Magn. Magn. Mater. 285, 164–168 (2005)

    Article  ADS  Google Scholar 

  39. R. Grössinger, J. Magn. Magn. Mater. 28, 137 (1982)

    Article  ADS  Google Scholar 

  40. S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 1997)

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge Prof. D. Behera, Department of Physics and Astronomy, NIT Rourkela for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simanchala Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Tripathy, S.N., Pattanayak, R. et al. Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19). Appl. Phys. A 123, 3 (2017). https://doi.org/10.1007/s00339-016-0601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0601-y

Keywords

Navigation