Skip to main content
Log in

Performance optimization of Pnp InGaAs/InP heterojunction phototransistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fabrication, physical simulation, and optimization of two-terminal Pnp heterojunction phototransistors (2T-HPTs) based on In0.53Ga0.47As/InP are reported. The parameters of fundamental models are determined by comparing the simulated current and response characteristics with the experimental results. To optimize the optical gain and device performance, the precise adjustment of the base doping level, base width, and compositional grading of base has been investigated. Properly reducing the base width or increasing the range of the compositional grading can greatly enhance the emitter injection efficiency. The effects of high-low doping in collector region and the insertion of a thin, undoped InGaAs layer in the base region of the HPT have also been investigated in detail. It is found the high-low doping in collector can form an electric field to aid carrier transport, and the intrinsic layer between emitter and base has functions of reducing knee voltage and the dark current of HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.D. Wang, W.D. Hu, X.S. Chen, W. Lu, H.J. Tang, T. Li, H.M. Gong, Opt. Quantum Electron. 40, 1261 (2008)

    Article  Google Scholar 

  2. L.M. Lunardi, S. Chandrasekhar, A.H. Gnauck, C.A. Burrus, R.A. Hamm, IEEE Photon. Technol. Lett. 7, 1201 (1995)

    Article  ADS  Google Scholar 

  3. A.L. Gutierrez-Aitken, K. Yang, X. Zhang, G.I. Haddad, IEEE Photon. Technol. Lett. 7, 1339 (1995)

    Article  ADS  Google Scholar 

  4. M. MacDougal, J. Geske, C. Wang, S. Liao, J. Getty, A. Holmes, Proc. SPIE 7298, 72983F (2009)

    Article  ADS  Google Scholar 

  5. H.W. Yoon, M.C. Dopkiss, G.P. Eppeldauer, Proc. SPIE 6297, 62970 (2006)

    ADS  Google Scholar 

  6. S. Chandrasekhar, L.M. Lunardi, A.H. Gnauck, R.A. Hamm, G.J. Qua, IEEE Photon. Technol. Lett. 5, 1316 (1993)

    Article  ADS  Google Scholar 

  7. A. Leven, V. Houtsma, R. Kopf, Y. Baeyens, Y.K. Chen, Electron. Lett. 40, 833 (2004)

    Article  Google Scholar 

  8. L.Y. Leu, J.T. Gardner, S.R. Forrest, Appl. Phys. Lett. 57, 1251 (1990)

    Article  ADS  Google Scholar 

  9. S. Datta, K.P. Roenker, M.M. Cahay, J. Appl. Phys. 83, 8036 (1998)

    Article  ADS  Google Scholar 

  10. L.Y. Leu, J.T. Gardner, S.R. Forrest, J. Appl. Phys. 69, 1052 (1991)

    Article  ADS  Google Scholar 

  11. H. Luo, D. Ban, H.C. Liu, Z.R. Wasilewski, M. Buchanan, Appl. Phys. Lett. 88, 073501 (2006)

    Article  ADS  Google Scholar 

  12. Z.Q. Ma, S. Mohammadi, L.P.B. Katehi, S.A. Alterovitz, G.E. Ponchak, IEEE Trans. Microw. Theory Tech. 50, 1101 (2002)

    Article  ADS  Google Scholar 

  13. Z.Q. Ma, N.Y. Jiang, IEEE Trans. Electron Device 52, 248 (2005)

    Article  ADS  Google Scholar 

  14. S.M. Frimel, K.P. Roenker, J. Appl. Phys. 82, 1427 (1997)

    Article  ADS  Google Scholar 

  15. Silvaco International, User’s Manual (Silvaco International, Santa Clara, 2008)

    Google Scholar 

  16. P.M. Enquist, L.P. Ramberg, L.F. Eastman, J. Appl. Phys. 61, 2663 (1987)

    Article  ADS  Google Scholar 

  17. D.J. Han, G.H. Li, Y.F. Zhang, E.J. Zhu, IEEE Photon. Technol. Lett. 9, 1391 (1997)

    Article  ADS  Google Scholar 

  18. E. Lefebvre, M. Zaknoune, F. Mollot, Proc. IEEE IPRM 14, 615 (2002)

    Google Scholar 

  19. H.A. Khan, A.A. Rezazadeh, S. Sohaib, T. Tauqeer, IEEE J. Quantum Electron. 48, 576 (2012)

    Article  ADS  Google Scholar 

  20. A.A. Grinberg, M.S. Shur, R.J. Fischer, H. Morkoc, IEEE Trans. Electron Devices 12, 1758 (1984)

    Article  ADS  Google Scholar 

  21. M. Ida, K. Kurishima, N. Watanabe, IEEE Electron Device Lett. 23, 694 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the National Natural Science Foundation of China (No. 61307044), the Natural Science Foundation of Jiangsu Province of China (No. BK20130321), the open project of Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences (No. IIMDKFJJ-15-06), the Research Fund for the Doctoral Program of Higher Education of China (No. 20133201120009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, and the Research Innovation Program for College Graduates of Jiangsu Province (SJLX15-0601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhu, M. Performance optimization of Pnp InGaAs/InP heterojunction phototransistors. Appl. Phys. A 122, 1034 (2016). https://doi.org/10.1007/s00339-016-0565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0565-y

Keywords

Navigation