Skip to main content
Log in

Fabrication of flex sensors through direct ink write technique and its electrical characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work is intended to fabricate low-cost flex sensor from conductive carbon paste using direct ink write (DIW) technique. DIW method is one of the additive manufacturing processes, which is capable to deposit a variety of material on a variety of substrates by a different mechanism to feature resolution at a microns level. It is widely used in the electronic industry for fabrication of PCBS and electrodes for different electronic devices. The DIW system in present study extrudes material stored in the syringe barrel through nozzle using compressed air. This mechanism will assist in creating patterns on a variety of substrates. Pneumatic controller is employed to control deposition of material, while computer-controlled X–Y stage is employed to control pattern generation. For effective and control patterning, printing parameters were optimized using Taguchi design optimization technique. The conductive carbon paste is used as ink for pattern generation on flexible PET substrate. Samples of flex sensor having different dimensions are prepared through DIW. The fabricated sensors were used as flexion sensor, and its electrical characteristic was evaluated. The obtained sensors are stable and reliable in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Rosset, H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110(2), 281–307 (2013)

    Article  ADS  Google Scholar 

  2. S. Garner, S. Glaesemann, X. Li, Ultra-slim flexible glass for roll-to-roll electronic device fabrication. Appl. Phys. A 116(2), 403–407 (2014)

    Article  ADS  Google Scholar 

  3. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi et al., Organic nonvolatile memory transistors for flexible sensor arrays. Science 326(5959), 1516–1519 (2009)

    Article  ADS  Google Scholar 

  4. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts et al., All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 522–531 (2010)

    Article  Google Scholar 

  5. L. Zhou, A. Wanga, S. Wu, J. Sun, S. Park, T.N. Jackson, All-organic active matrix flexible display. Appl. Phys. Lett. 88(8), 083502 (2006). doi:10.1063/1.2178213

    Article  ADS  Google Scholar 

  6. K. Shin, J. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 23(18), 2113–2118 (2011)

    Article  Google Scholar 

  7. M.E. Jalil, M.K.A. Rahim, N.A. Samsuri et al., Flexible printed chipless RFID tag using metamaterial–split ring resonator. Appl. Phys. A 122, 348 (2016). doi:10.1007/s00339-016-9865-5

    Article  ADS  Google Scholar 

  8. D. Kim, N. Lu, R. Ma, Y. Kim, S. Wang et al., Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  ADS  Google Scholar 

  9. O. Catanescu, L. Chien, Patterning a poly (3,4-ethylenedioxythiophene) thin film using a liquid crystalline network. Adv. Mater. 17(3), 305–309 (2005)

    Article  Google Scholar 

  10. J.H. Lim, C.A. Mirkin, Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater. 14(20), 1474–1477 (2002)

    Article  Google Scholar 

  11. L. Dipietro, A.M. Sabatini, P. Dario, Survey of glove-based systems and their applications. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38(4), 461–482 (2008)

    Article  Google Scholar 

  12. S. Merilampi, T. Laine-Ma, P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49(7), 782–790 (2009)

    Article  Google Scholar 

  13. M.A. Zawawi, S. O’Keeffe, E. Lewis, Intensity-modulated fiber optic sensor for health monitoring applications: a comparative review. Sens. Rev. 33(1), 57–67 (2013)

    Article  Google Scholar 

  14. H. Yoon, Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3(3), 524–549 (2013)

    Article  ADS  Google Scholar 

  15. M.S. Kim, H.J. Shin, Y.K. Park, Design concept of high-performance flexible tactile sensors with a robust structure. Int. J. Precis. Eng. Manuf. 13(11), 1941–1947 (2012)

    Article  Google Scholar 

  16. M. Vatani, Y. Lu, E.D. Engeberg, J.W. Choi, Combined 3D printing technologies and material for fabrication of tactile sensors. Int. J. Precis. Eng. Manuf. 16(7), 1375–1383 (2015)

    Article  Google Scholar 

  17. H.J. Bang, H.I. Kim, K.S. Lee, Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. Int. J. Precis. Eng. Manuf. 13(12), 2121–2126 (2012)

    Article  Google Scholar 

  18. M.K. Kang, D.J. Park, S.S. Lee, Strain measurements on a cantilever beam with fiber bragg grating sensors using a pair of collimators. Int. J. Precis. Eng. Manuf. 13(3), 455–458 (2012)

    Article  Google Scholar 

  19. G. Saggio, Mechanical model of flex sensors used to sense finger movements. Sens. Actuators A 185, 53–58 (2012)

    Article  ADS  Google Scholar 

  20. L.K. Simone, D.G. Kamper, Design considerations for a wearable monitor to measure finger posture. J. Neuro Eng. Rehabil. 2(1), 1 (2005)

    Article  Google Scholar 

  21. C. Rendl, D. Kim, S. Fanello, P. Parzer, C. Rhemann, J. Taylor, M. Zirkl, et al., FlexSense: a transparent self-sensing deformable surface, in Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (2014), pp. 129–138

  22. J. Jurgens, P.E. Patterson, Development and evaluation of an inexpensive sensor system for use in measuring relative finger positions. Med. Eng. Phys. 19(1), 1–6 (1997)

    Article  Google Scholar 

  23. G. Saggio, Electrical resistance profiling of bend sensors adopted to measure spatial arrangement of the human body, in Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies (2011), p. 5

  24. S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96, 522–531 (2015)

    Article  Google Scholar 

  25. G. Saggio, A novel array of flex sensors for a goniometric glove. Sens. Actuators 205, 119–125 (2014)

    Article  Google Scholar 

  26. S. Bakhshi, M.H. Mahoor, Development of a wearable sensor system for measuring body joint flexion, in International Conference on Body Sensor Networks (2011), pp. 35–40

  27. K. Kure, T. Kanda, K. Suzumori, S. Wakimoto, Flexible displacement sensor using injected conductive paste. Sens. Actuators 143(2), 272–278 (2008)

    Article  Google Scholar 

  28. K. Kure, T. Kanda, K. Suzumori, S. Wakimoto, Intelligent FMA using flexible displacement sensor with paste injection, in IEEE International Conference on Robotics and Automation, ICRA (2006), pp. 1012–1017

  29. M. Sajid, H.W. Danga, K.H. Na, K.H. Choi, Highly stable flex sensors fabricated through mass production roll-to-roll micro-gravure printing system. Sens. Actuators, A 236, 73–81 (2015)

    Article  Google Scholar 

  30. J.J. Gems, P.E. Pattersont, Development and evaluation of an inexpensive sensor system for use in measuring relative finger positions. Med. Eng. Phys. 19(1), 1–6 (1997)

    Article  Google Scholar 

  31. R. Gentner, J. Classen, Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings. J. Neurosci. Methods 178(1), 138–147 (2009)

    Article  Google Scholar 

  32. Z.L. Jiang, Y.Y. Liu, H.P. Chen, Y.N. Zhang, Q.X. Hu, Multi-objective optimization of process parameters for biological 3D printing composite forming based on SNR and grey correlation degree. Int. J. Adv. Manuf. Technol. 80(1), 549–554 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abas, M., Rahman, K. Fabrication of flex sensors through direct ink write technique and its electrical characterization. Appl. Phys. A 122, 972 (2016). https://doi.org/10.1007/s00339-016-0507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0507-8

Keywords

Navigation