Skip to main content
Log in

Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser deposition (PLD) has demonstrated its capacity in thin films growing under the moderate laser intensity. But when the laser intensity increases, the presence of droplets on the thin film limits the PLD efficiency such that the process needs an optimization study. In this way, an experimental study has been conducted in order to correlate between the appearance of those droplets and the laser fluence. The comprehension of the physical mechanism during ablation and the control of the deposition parameters allowed to get a safe process. Our experiment consists in measuring the amount of ejected matter from polycrystalline alumina target as a function of the laser fluence when irradiated by a KrF laser. According to laser fluence, several kinds of ablation regimes have been identified. Below a threshold value found as 12 J/cm2, the mechanism of ablation was assigned to normal evaporation, desorption and nonthermal processes. While above this threshold value, the mechanism of ablation was assigned to phase explosion phenomenon which is responsible of droplets formation when the surface temperature approaches the critical temperature T tc. A negative charge collector was used to collect the positive ions in the plume. Their times of flight (TOF) signal were used to estimate the appropriate T tc for alumina target. Ions yield, current as well as kinetic energy were deduced from the TOF signal. Their evolutions show the occurrence of an optical breakdown in the vapor plume which is well correlated with the onset of the phase explosion phenomenon. At 10 J/cm2, the ions velocities collected by the probe have been compared to those obtained from optical emission spectroscopy diagnostic and were discussed. To prove the occurrence of phase explosion by the appearance of droplets, several thin films were elaborated on Si (100) substrate at different laser fluence into vacuum. They have been characterized by scanning electron microscope. The results were well correlated with those obtained with mass measurements as function of laser fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  2. D. Bauerle, Laser Processing and Chemitry (Springer, Berlin, 2011)

    Book  Google Scholar 

  3. M. Allmen, A. Blatter, Laser–Beam Interactions with Materials Physical Principles and Applications, Second Updated (Springer, Berlin, 1995)

    Google Scholar 

  4. A. Miotello, R. Kelly, Appl. Phys. Lett. 67(24), 3535 (1995)

    Article  ADS  Google Scholar 

  5. R. Kelly, A. Miotello, Appl. Surf. Sci. 96–98, 205 (1996)

    Article  Google Scholar 

  6. R. Kelly, A. Miotello, Phys. Rev. E 60(3), 2616 (1999)

    Article  ADS  Google Scholar 

  7. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    Article  ADS  Google Scholar 

  8. K. Yahiaoui, S. Abdelli-Messaci, S. Messaoud-Aberkane, T. Kerdja, H. Kellou, Spectrochim. Acta B 93, 20 (2014)

    Article  ADS  Google Scholar 

  9. K. Yahiaoui, T. Kerdja, S. Malek, Surf. Interface Anal. 42, 1299 (2010)

    Article  Google Scholar 

  10. J.H. Yoo, O.V. Borisov, X. Mao, R.E. Russo, Anal. Chem. 73(10), 2288 (2001)

    Article  Google Scholar 

  11. M. Stafe, I. Vladoiu, I.M. Popescu, Cent. Eur. J. Phys. 6(2), 327 (2008)

    Google Scholar 

  12. R.E. Russo, X.L. Mao, H.C. Liu, J.H. Yoo, S.S. Mao, Appl. Phys. A 69, S887 (1999)

    Article  ADS  Google Scholar 

  13. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  14. Q. Lu, S.S. Mao, X. Mao, R.E. Russo, Appl. Phys. Lett. 80, 3072 (2002)

    Article  ADS  Google Scholar 

  15. D.M. Karnakis, Appl. Surf. Sci. 252, 7823 (2006)

    Article  ADS  Google Scholar 

  16. C. Porneala, D.A. Willis, Appl. Phys. Lett. 89, 211121 (2006)

    Article  ADS  Google Scholar 

  17. M.M. Martynyuk, Sov. Phys. Tech. Phys. 19, 793 (1974)

    ADS  Google Scholar 

  18. M.M. Martynyuk, Thermochim. Acta 206, 55 (1992)

    Article  Google Scholar 

  19. M.M. Martynyuk, Russ. J. Phys. Chem. 57(4), 494 (1983)

    Google Scholar 

  20. W. Fuke, U. Seydel, High Temp. High Press. 12, 419 (1980)

    Google Scholar 

  21. B. Doggett, J.G. Lunney, J. Appl. Phys. 109, 093304 (2011)

    Article  ADS  Google Scholar 

  22. Q. Lu, Phys. Rev. E 67(1), 016410–016411 (2003)

    Article  ADS  Google Scholar 

  23. S. Amoruso, Appl. Surf. Sci. 138–139, 292 (1999)

    Article  Google Scholar 

  24. S. Amoruso, A. Amadeo, V. Beradi, R. Bruzzese, N. Spinelli, R. Velotta, Appl. Surf. Sci. 96–98, 175 (1996)

    Article  Google Scholar 

  25. C.J. Knight, AIAA J. 17(5), 519 (1979)

    Article  ADS  Google Scholar 

  26. R. Kelly, R.W. Dreyfus, Nucl. Instrum. Methods B 32, 341 (1988)

    Article  ADS  Google Scholar 

  27. H.J. Dang, Y.X. Tang, Q.Z. Qin, Appl. Surf. Sci. 136, 206 (1998)

    Article  ADS  Google Scholar 

  28. L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 71(4), 551 (1997)

    Article  ADS  Google Scholar 

  29. O.A. Nodvorsky, O.D. Khramova, C. Wenzel, J.W. Bartha, E.O. Filippova, J. Appl. Phys. 95(5), 3612 (2003)

    Article  ADS  Google Scholar 

  30. C.M. Guldberg, Z. Phys. Chem. 5, 374 (1890)

    Google Scholar 

  31. I.B. Sladkov, Zh. Fiz. Khim. 58(8), 2057 (1984)

    Google Scholar 

  32. V. Craciun, N. Bassim, R.K. Singh, D. Craciun, J. Hermann, C. Boulmer-leborgne, Appl. Surf. Sci. 186, 288 (2002)

    Article  ADS  Google Scholar 

  33. W.O. Siew, W.K. Lee, H.Y. Wong, T.K. Yong, S.S. Yap, T.Y. Tou, Appl. Phys. A 101, 627 (2010)

    Article  ADS  Google Scholar 

  34. L. Escobar-Alarcón, E. Camps, E. Villagrán, E. Camps, S. Romero, J.E. Villareal-Barajas, P.R. González, Thin Solid Films 433, 126 (2003)

    Article  ADS  Google Scholar 

  35. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta B 58, 1867 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yahiaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahiaoui, K., Abdelli-Messaci, S., Messaoud Aberkane, S. et al. Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation. Appl. Phys. A 122, 963 (2016). https://doi.org/10.1007/s00339-016-0491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0491-z

Keywords

Navigation