Skip to main content

Laser-Inducing Extreme Thermodynamic Conditions in Condensed Matter to Produce Nanomaterials for Catalysis and the Photocatalysis

  • Chapter
  • First Online:
Advances in the Application of Lasers in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 274))

Abstract

Vaporization from the aluminum target surface, under nanosecond laser irradiation, was evaluated in the framework of the unsteady adiabatic expansion model, while the homogeneous nucleation of vapor bubbles in the metastable liquid (phase explosion) was simulated in the framework of the classical nucleation theory. The size distribution of the liquid nanodroplets produced in the phase explosion process was found to obey a power law in agreement with the few available experimental data when it is assumed that nanoparticles formation comes from solidification of liquid nanodroplets. Some experimental examples are reported to show that pulsed-laser deposition technique is able to synthesize nanoparticles in a single step with the required features for catalysis and photocatalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  2. M.M. Martynyuk, Sov. Phys. Tech. Phys. 21, 430 (1976)

    Google Scholar 

  3. (a) R. Kelly, A. Miotello, Appl. Surf. Sci. 9698, 205 (1996); (b) A. Miotello, R. Kelly, B. Braren, C.E. Otis, Appl. Phys. Lett. 61, 2784 (1992)

    Google Scholar 

  4. A. Miotello, R. Kelly, Appl. Phys. A Mater. Sci. Process. 69, S67 (1999)

    Article  ADS  Google Scholar 

  5. N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197, 41 (2002)

    Article  ADS  Google Scholar 

  6. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  7. R.D. Torres, S.L. Johnson, R.F. Haglund Jr., J. Hwang, P.L. Burn, P.H. Holloway, Crit. Rev. Sol. State and Mat. Sci. 36, 16 (2011)

    Google Scholar 

  8. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  9. L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 74, 1341 (1999)

    Article  ADS  Google Scholar 

  10. A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  11. A. Mazzi, F. Gorrini, A. Miotello, Phys. Rev. E 92, 031301(R) (2015)

    Article  ADS  Google Scholar 

  12. A. Mazzi, A. Miotello, J. Coll. Int. Sci. 489, 126 (2017)

    Article  ADS  Google Scholar 

  13. M.M. Martynyuk, Combust. Explosion Shock Waves 13, 178 (1977)

    Google Scholar 

  14. K.M. Watson, Ind. Eng. Chem. 35, 398 (1943)

    Article  Google Scholar 

  15. E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945)

    Article  ADS  Google Scholar 

  16. B.J. Keene, Int. Mat. Rev. 38, 157 (1993)

    Article  Google Scholar 

  17. N.H. March, in Liquid Metals: Concepts and Theory (Cambridge University Press, Cambridge, 1990), pp. 398

    Google Scholar 

  18. V.N. Korobenko, A.D. Rakhel, J. Exp. Theor. Phys. 112, 649 (2011)

    Article  ADS  Google Scholar 

  19. G.A. Pinhasi, A. Ullmann, A. Dayan, Int. J. Heat Mass Trans. 50, 4780 (2007)

    Article  Google Scholar 

  20. A. Peterlongo, A. Miotello, R. Kelly, Phys. Rev. E 50, 4716 (1994)

    Article  ADS  Google Scholar 

  21. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Camb. Univ. Press 32, 10013 (2007)

    Google Scholar 

  22. R. Kelly, J. Chem. Phys. 92, 5047 (1990)

    Article  ADS  Google Scholar 

  23. S.I. Anisimov, Sov. Phys. JETP 27, 182 (1968)

    ADS  Google Scholar 

  24. C.J. Knight, AIAA J. 17, 519 (1979)

    Article  ADS  Google Scholar 

  25. R. Kelly, A. Miotello, Phys. Rev. E 60(3), 2616 (1999)

    Article  ADS  Google Scholar 

  26. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, 1996)

    Google Scholar 

  27. A. Mazzi, F. Gorrini, A. Miotello, Appl. Surf. Sci. 418, Part B, 601 (2017)

    Google Scholar 

  28. V.P. Skripov, Metastable Liquids (Wiley, 1974)

    Google Scholar 

  29. H.S. Lee, H. Merte, Int. J. Heat Mass Trans. 39, 2427 (1996)

    Article  Google Scholar 

  30. C. Wu, L.V. Zhigilei, Appl. Phys. A 114, 11 (2014)

    Article  ADS  Google Scholar 

  31. S. Noël, J. Hermann, T. Itina, Appl. Surf. Sci. 253, 6310 (2007)

    Article  ADS  Google Scholar 

  32. P.T. Murray, E. Shin, Mater. Lett. 62, 4336 (2008)

    Article  Google Scholar 

  33. J.C. Alonso, R. Diamant, P. Castillo, M.C. Acosta-García, N. Batina, E. Haro-Poniatowski, Appl. Surf. Sci. 255, 4933 (2009)

    Article  ADS  Google Scholar 

  34. (a) P.V. Kamat, J. Bisquert, J. Phys. Chem. C 117, 14873 (2013); (b) S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Edn. 52, 7372 (2013)

    Google Scholar 

  35. R. van de Krol, in Photoelectrochemical Hydrogen Production, ed. by R. van de Krol, M. Grätzel (Springer, Boston, 2012), p. 13

    Google Scholar 

  36. (a) W.J. Youngblood, S.-H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A. L. Moore, D. Gust, T.E. Mallouk, J. Am. Chem. Soc. 131, 926 (2009); (b) S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J.H. Pijpers, D.G. Nocera, Science 334, 645 (2011); (c) V. Cristino, S. Berardi, S. Caramori, R. Argazzi, S. Carli, L. Meda, A. Tacca, C.A. Bignozzi, Phys. Chem. Chem. Phys. 15, 13083 (2013); (d) M. Orlandi, S. Argazzi, A. Sartorel, M. Carraro, G. Scorrano, M. Bonchio, F. Scandola, Chem. Comm. (Camb) 46, 3152 (2010); (e) B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, T.W. Hamann, J. Am. Chem. Soc. 134, 16693 (2012); (f) J. Sun, D.K. Zhong, D. R. Gamelin, Energy Env. Sci. 3, 1252 (2010)

    Google Scholar 

  37. J.R. McKone, N.S. Lewis, H.B. Gray, Chem. Mat. 26, 407 (2014)

    Article  Google Scholar 

  38. F. Lin, S.W. Boettcher, Nat. Mater. 13, 81 (2014)

    Article  ADS  Google Scholar 

  39. L. Trotochaud, T.J. Mills, S.W. Boettcher, J. Phys. Chem. Lett. 4, 931 (2013)

    Article  Google Scholar 

  40. M. Fondell, T.J. Jacobsson, M. Boman, T. Edvinsson, J. Mat. Chem. A 2, 3352 (2014)

    Article  Google Scholar 

  41. M. Orlandi, N. Dalle Carbonare, S. Caramori, C.A. Bignozzi, S. Berardi, A. Mazzi, Z. El Koura, N. Bazzanella, N. Patel, A. Miotello, ACS Appl. Mat. Int. 8, 20003 (2016)

    Article  Google Scholar 

  42. N. Dalle Carbonare, S. Carli, R. Argazzi, M. Orlandi, N. Bazzanella, A. Miotello, S. Caramori, C.A. Bignozzi, Phys. Chem. Chem. Phys. 17, 29661 (2015)

    Article  Google Scholar 

  43. P.C.K. Vesborg, T.F. Jaramillo, RSC Adv. 2, 7933 (2012)

    Article  Google Scholar 

  44. M. Orlandi, S. Caramori, F. Ronconi, C.A. Bignozzi, Z. El Koura, N. Bazzanella, L. Meda, A. Miotello, A.C.S. Appl, Mat. & Int. 6, 6186 (2014)

    Article  Google Scholar 

  45. (a) A. Infortuna, A. S. Harvey, L.J. Gauckler, Adv. Funct. Mat. 18, 127 (2008); (b) I. Petrov, P. B. Barna, L. Hultman, J.E. Greene, J. Vac. Sci. Tech. A 21, S117 (2003)

    Google Scholar 

  46. D. Raymand, T.J. Jacobsson, K. Hermansson, T. Edvinsson, J. Phys. Chem. C 116, 6893 (2012)

    Article  Google Scholar 

  47. L. Vayssieres, C. Sathe, S.M. Butorin, D.K. Shuh, J. Nordgren, J. Guo, Adv. Mat. 17, 2320 (2005)

    Article  Google Scholar 

  48. R.D. Smith, M.S. Prevot, R.D. Fagan, S. Trudel, C.P. Berlinguette, J. Am. Chem. Soc. 135, 11580 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Miotello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzi, A., Orlandi, M., Patel, N., Miotello, A. (2018). Laser-Inducing Extreme Thermodynamic Conditions in Condensed Matter to Produce Nanomaterials for Catalysis and the Photocatalysis. In: Ossi, P. (eds) Advances in the Application of Lasers in Materials Science. Springer Series in Materials Science, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-96845-2_4

Download citation

Publish with us

Policies and ethics