Skip to main content
Log in

Polarization-insensitive ultra-thin quasi-metasurface based on the spoof surface plasmon polaritons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We theoretically and experimentally propose a novel polarization-insensitive ultra-thin quasi-metasurface composed of the twelve gradually increasing two-sided metallic grooves, an ultra-thin flexible dielectric film, and a circular copper surface to induce the spoof surface plasmon polaritons in the microwave frequency. The evolution of dispersion characteristic is systematically analyzed in simulation, and we interestingly reveal that the quasi-metasurface provides a way to convert spatial propagating waves to the spoof surface plasmon polariton waves not only for transverse magnetic incidence but also for transverse electric waves. Hence, the proposed quasi-metasurface converts the scattering direction from incident wave direction to the spoof surface plasmon polaritons wave direction and the far-field scattering patterns can be controlled due to the conversion and transmission. A quasi-metasurface device is easily implemented using the common printed circuit board method for demonstration. Both numerical simulations and experimental results verify the polarization-insensitive ultra-thin quasi-metasurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Polman, Plasmonics applied. Science 322, 868 (2008)

    Article  Google Scholar 

  2. A.P. Hibbins, B.R. Evans, J.R. Sambles, Science 308, 670 (2005)

    Article  ADS  Google Scholar 

  3. K. Uchida, H. Adachi, D. Kikuchi, S. Ito, Z. Qiu, S. Maekawa, E. Saitoh, Nat. Commun. 6, 5910 (2015)

    Article  ADS  Google Scholar 

  4. J.B. Khurgin, Nat. Nanotechnol. 10, 1 (2015)

    Article  ADS  Google Scholar 

  5. Y. Ueba, J. Takahara, T. Nagatsuma, Opt. Lett. 36, 909 (2011)

    Article  ADS  Google Scholar 

  6. D. O’Connor, P. Ginzburg, F.J. Rodrıguez-Fortuno, G.A. Wurtz, A.V. Zayats, Nat. Commun. 5, 5327 (2014)

    Article  Google Scholar 

  7. S.-H. Kim, S.S. Oh, K.-J. Kim, J.-E. Kim, H.Y. Park, O. Hess, C.-S. Kee, Phys. Rev. B 91, 035116 (2015)

    Article  ADS  Google Scholar 

  8. J. Wang, S. Qu, Z. Xu, H. Ma, X. Wang, D. Huang, Y. Li, Photon. Nanostruct. Fundam. Appl. 10, 540 (2012)

    Article  ADS  Google Scholar 

  9. Zhen Gao, Xufeng Zhang, Linfang Shen, J. Appl. Phys. 108, 113104 (2010)

    Article  ADS  Google Scholar 

  10. W.-C. Chen, J.J. Mock, D.R. Smith, T. Akalin, W.J. Padilla, Phys. Rev. X 1, 021016 (2011)

    Google Scholar 

  11. S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, C. Zhang, Opt. Express 23, 3523 (2015)

    Article  ADS  Google Scholar 

  12. C.A. Valagiannopoulos, A. Tukiainen, T. Aho, T. Niemi, M. Guina, S.A. Tretyakov, C.R. Simovski, Phys. Rev. B 91, 115305 (2015)

    Article  ADS  Google Scholar 

  13. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1232009 (2013)

    Article  Google Scholar 

  14. D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Science 345, 6194 (2014)

    Google Scholar 

  15. J.J. Wu, H.E. Lin, T.-J. Yang, H.J. Chang, I.-J. Hsieh, Plasmonics 6, 59 (2011)

    Article  Google Scholar 

  16. Y. Yang, D.R. Grischkowsky, I.E.E.E. Trans, Terahertz. Sci. Technol. 3, 151 (2013)

    Google Scholar 

  17. G. Kumar, S. Pandey, A. Cui, A. Nahata, New J. Phys. 13, 033024 (2011)

    Article  ADS  Google Scholar 

  18. X. Shen, T.J. Cui, Proc. Natl. Acad. Sci. USA 110, 40–45 (2013)

    Article  ADS  Google Scholar 

  19. H.F. Ma, X. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Laser Photon. Rev. 8, 146 (2014)

    Article  Google Scholar 

  20. J.Y. Yin, J. Ren, H.C. Zhang, B.C. Pan, T.J. Cui, Sci. Rep. 5, 8165 (2015)

    Article  ADS  Google Scholar 

  21. X. Wan, J.Y. Yin, H.C. Zhang, T.J. Cui, Appl. Phys. Lett. 105, 083502 (2014)

    Article  ADS  Google Scholar 

  22. D.A. Fuhrmann, S.M. Thon, H. Kim, D. Bouwmeester, P.M. Petroff, A. Wixforth, H.J. Krenner, Nat. Photon. 5, 605 (2011)

    Article  ADS  Google Scholar 

  23. K. Takeuchi, N. Yamamoto, Opt. Express 19, 12365 (2011)

    Article  ADS  Google Scholar 

  24. Y.G. Ma, L. Lan, S.M. Zhong, C.K. Ong, Opt. Express 19, 21189 (2011)

    Article  ADS  Google Scholar 

  25. X. Gao, L. Zhou, Z. Liao, H.F. Ma, T.J. Cui, Appl. Phys. Lett. 104, 191603 (2014)

    Article  ADS  Google Scholar 

  26. J. Yang, S. Zhou, C. Hu, W. Zhang, X. Xiao, J. Zhang, Laser Photon. Rev. 8, 590 (2014)

    Article  Google Scholar 

  27. P. Torma, W.L. Barnes, Rep. Prog. Phys. 78, 013901 (2014)

    Article  ADS  Google Scholar 

  28. J.J. Xu, H.C. Zhang, Q. Zhang, T.J. Cui, Appl. Phys. Lett. 106, 021102 (2015)

    Article  ADS  Google Scholar 

  29. X. Wan, Y.B. Li, B.G. Cai, T.J. Cui, Appl. Phys. Lett. 105, 121603 (2014)

    Article  ADS  Google Scholar 

  30. P.A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F.J. Garcia-Vidal, T. Jn Cui, J.B. Pendry, Magnetic localized surface plasmons. Phys Rev X 4, 021003 (2014)

    Google Scholar 

  31. A.A. High, R.C. Devlin, A. Dibos, M. Polking, D.S. Wild, J. Perczel, N.P. de Leon, M.D. Lukin, H. Park, Nature 522, 192 (2015)

    Article  ADS  Google Scholar 

  32. S.-J. Li, J. Gao, X.-Y. Cao, Z. Zhang, T. Liu, Y.-J. Zheng, C. Zhang, G. Zheng, Appl. Phys. Lett. 106, 181103 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China under Grant (Nos. 61501494, 61271100, 61471389, 61671464) and the Doctoral Foundation of Air Force Engineering University under grant (No.KGD 080914002). They also thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Jia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SJ., Cao, XY., Gao, J. et al. Polarization-insensitive ultra-thin quasi-metasurface based on the spoof surface plasmon polaritons. Appl. Phys. A 122, 857 (2016). https://doi.org/10.1007/s00339-016-0391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0391-2

Keywords

Navigation