Skip to main content
Log in

Controllable growth of vertically aligned Bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, vertically aligned Bi-doped TiO2 nanorod arrays as photoanodes were successfully grown on the fluorine-doped tin oxide by hydrothermal method. Structural analysis showed that bismuth was successfully incorporated into the TiO2 lattice at low concentration, but at higher concentration, phase segregation of Bi2O3 in the TiO2 matrix was occurred. TiO2 nanorods with 3 % bismuth concentration had minimum electrical resistivity. As the solid-state electrolyte, Mg-doped CuCrO2 nanoparticles with p-type conductivity were synthesized by sol–gel method. The fabricated all-oxide solid-state dye-sensitized solar cells with Bi-doped TiO2 nanorods displayed better photovoltaic performance due to the presence of Bi. The improved cell performance was correlated with the higher dye loading, slower charge recombination rate and the higher electrical conductivity of the photoanodes. After mechanical pressing, the all-oxide solid-state DSSC exhibited enhanced photovoltaic performance due to the formation of the large neck between adjacent nanoparticles by mechanical sintering. The open-circuit photovoltage decay measurement of the devices and electrical conductivity of the nanoparticles before and after pressing revealed that the mechanical pressing technique reduces charge recombination rate and facilitates electron transport through the interconnected nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.Y. Hsu, Y.C. Chen, R.Y.Y. Lin, K.C. Hob, J.T. Lin, Phys. Chem. Chem. Phys. 14, 14099 (2012)

    Article  Google Scholar 

  2. M. Adineh, P. Tahay, M. Ameri, N. Safari, E. Mohajerani, RSC Adv. 6, 14512 (2016)

    Article  Google Scholar 

  3. S. Powar, D. Xiong, T. Daeneke, M.T. Ma, A. Gupta, G.P. Lee, S. Makuta, Y. Tachibana, W. Chen, L. Spiccia, Y.B. Cheng, G. Gotz, P. Bauerle, U. Bach, J. Phys. Chem. C 118, 16375 (2014)

    Article  Google Scholar 

  4. D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen, X. Xu, M. Wang, Y.B. Cheng, J. Mater. Chem. 22, 24760 (2012)

    Article  Google Scholar 

  5. C.G. Ezema, A.C. Nwanya, B.E. Ezema, B.H. Patil, R.N. Bulakhe, P.O. Ukoha, C.D. Lokhande, M. Maaza, F.I. Ezema, Appl. Phys. A 122, 435 (2016)

    Article  ADS  Google Scholar 

  6. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem. 6, 242 (2014)

    Article  Google Scholar 

  7. H. Li, S. Li, Y. Zhang, F. Yan, RSC Adv. 6, 346 (2016)

    Article  Google Scholar 

  8. I.K. Ding, J. Melas-Kyriazi, N.L. Cevey-Ha, K.G. Chittibabu, S.M. Zakeeruddin, M. Gratzel, M.D. McGehee, Org. Electron. 11, 1217 (2010)

    Article  Google Scholar 

  9. C.P. Lee, L.Y. Lin, P.Y. Chen, R. Vittal, K.C. Ho, J. Mater. Chem. 20, 3619 (2010)

    Article  Google Scholar 

  10. V. Armel, M. Forsyth, D.R. MacFarlane, J.M. Pringle, Energy Environ. Sci. 4, 2234 (2011)

    Article  Google Scholar 

  11. S.Y. Cha, Y.G. Lee, M.S. Kang, Y.S. Kang, J. Photochem. Photobiol., A 211, 193 (2010)

    Article  Google Scholar 

  12. Y. Zhang, J. Zhao, B. Sun, X. Chen, Q. Li, L. Qiu, F. Yan, Electrochim. Acta 61, 185 (2012)

    Article  Google Scholar 

  13. H. Wang, X. Zhang, F. Gong, G. Zhou, Z.S. Wang, Adv. Mater. 24, 121 (2012)

    Article  Google Scholar 

  14. J.H. Yum, P. Chen, M. Gratzel, M.K. Nazeeruddin, ChemSusChem 1, 699 (2008)

    Article  Google Scholar 

  15. C. Xu, J.n Wu, U. V. Desai, D. Gao. Nano Lett. 12, 2420 (2012)

    Article  ADS  Google Scholar 

  16. Y. Wang, P. Sun, S. Cong, J. Zhao, G. Zou, Carbon 92, 262 (2015)

    Article  Google Scholar 

  17. J. Bandara, J.P. Yasomanee, Semicond. Sci. Technol. 22, 20 (2007)

    Article  ADS  Google Scholar 

  18. S.J. Lim, Y.S. Kang, D.W. Kim, Electrochim. Acta 56, 2031 (2011)

    Article  Google Scholar 

  19. S. Yuan, Q. Tang, B. Hu, C. Ma, J. Duan, B. He, J. Mater. Chem. A 2, 2814 (2014)

    Article  Google Scholar 

  20. J. Zhao, X. Shen, F. Yan, L. Qiu, S. Lee, B. Sun, J. Mater. Chem. 21, 7326 (2011)

    Article  Google Scholar 

  21. S.R. Jang, K. Zhu, M.J. Ko, K. Kim, C. Kim, N.G. Park, A.J. Frank, ACS Nano 5, 8267 (2011)

    Article  Google Scholar 

  22. B. O’Regan, D.T. Schwartz, S.M. Zakeeruddin, M. Gratzel, Adv. Mater. 12, 1263 (2000)

    Article  Google Scholar 

  23. P.M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter, H. Tributsch, Semicond. Sci. Technol. 18, 708 (2003)

    Article  ADS  Google Scholar 

  24. E.V.A. Premalal, R.M.G. Rajapakse, A. Konno, Electrochim. Acta 56, 9180 (2011)

    Article  Google Scholar 

  25. S. Nejati, K.K.S. Lau, Nano Lett. 11, 419 (2011)

    Article  ADS  Google Scholar 

  26. T. Leijtens, I.K. Ding, T. Giovenzana, J.T. Bloking, M.D. McGehee, A. Sellinger, ACS Nano 6, 1455 (2012)

    Article  Google Scholar 

  27. C. Cetin, H. Akyildiz, Mater. Chem. Phys. 170, 138 (2016)

    Article  Google Scholar 

  28. M. Asemi, M. Ghanaatshoar, Ceram. Int. 42, 6664 (2016)

    Article  Google Scholar 

  29. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  30. C. Nithya, ChemPlusChem 80, 1000 (2015)

    Article  Google Scholar 

  31. H. Wang, L. Xi, J. Tucek, C. Ma, G. Yang, M.K.H. Leung, R. Zboril, C. Niu, A.L. Rogach, ChemElectroChem 1, 1563 (2014)

    Article  Google Scholar 

  32. H.A. Hamedani, N.K. Allam, M.A. El-Sayed, M.A. Khaleel, H. Garmestani, F.M. Alamgir, Adv. Funct. Mater. 24, 6783 (2014)

    Article  Google Scholar 

  33. S. Xiao, L. Zhao, J. Lian, Catal. Lett. 144, 347 (2014)

    Article  Google Scholar 

  34. Z. Liang, H. Cui, K. Wang, P. Yang, L. Zhang, W. Mai, C.X. Wang, P. Liu, CrystEngComm 14, 1723 (2012)

    Article  Google Scholar 

  35. M. Asemi, M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 70, 416 (2014)

    Article  Google Scholar 

  36. M. Niu, R. Cui, H. Wu, D. Cheng, D. Cao, J. Phys. Chem. C 119, 13425 (2015)

    Article  Google Scholar 

  37. H. Zuo, J. Sun, K, Deng, R. Su, F. Wei and D. Wang. Chem. Eng. Technol. 30, 577 (2007)

    Article  Google Scholar 

  38. A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 4, 859 (2003)

    Article  Google Scholar 

  39. K. Wijeratne, J. Akilavasan, M. Thelakkat, J. Bandara, Electrochim. Acta 72, 192 (2012)

    Article  Google Scholar 

  40. J.J. Wu, G.R. Chen, H.H. Yang, C.H. Ku, J.Y. Lai, Appl. Phys. Lett. 90, 213109 (2007)

    Article  ADS  Google Scholar 

  41. M.S. Liang, C.C. Khaw, C.C. Liu, S.P. Chin, J. Wang, H. Li, Ceram. Int. 39, 1519 (2013)

    Article  Google Scholar 

  42. S. So, K. Lee, P. Schmuki, Phys. Status Solidi RRL 6, 169 (2012)

    Article  Google Scholar 

  43. J. Liu, H. Yang, W. Tan, X. Zhou, Y. Lin, Electrochim. Acta 56, 396 (2010)

    Article  Google Scholar 

  44. L. Schlur, A. Carton, P. Leveque, D. Guillon, G. Pourroy, J. Phys. Chem. C 117, 2993 (2013)

    Article  Google Scholar 

  45. J. Melas-Kyriazi, I.K. Ding, A. Marchioro, A. Punzi, B.E. Hardin, G.F. Burkhard, N. Tetreault, M. Gratzel, J.E. Moser, M.D. McGehee, Adv. Energy Mater. 1, 407 (2011)

    Article  Google Scholar 

  46. H.J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, M. Gratzel, Nanotechnology 19, 424003 (2008)

    Article  ADS  Google Scholar 

  47. M. Gao, Y. Wang, Q. Yi, Y. Su, P. Sun, X. Wang, J. Zhao, G. Zou, J. Mater. Chem. A 3, 20541 (2015)

    Article  Google Scholar 

  48. I.K. Ding, N. Tetreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Gratzel, M.D. McGehee, Adv. Funct. Mater. 19, 2431 (2009)

    Article  Google Scholar 

  49. K. Park, Q. Zhang, D. Myers, G. Cao, Appl. Mater. Interfaces 5, 1044 (2013)

    Article  Google Scholar 

  50. G. Benko, B. Skarman, R. Wallenberg, A. Hagfeldt, V. Sundstrom, A.P. Yartsev, J. Phys. Chem. B 107, 1370 (2003)

    Article  Google Scholar 

  51. M. Pavan, S. Rühle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban, E. Fortunato, Sol. Energ. Mater. Sol. Cells 132, 549 (2015)

    Article  Google Scholar 

  52. B.D. Yuhas, P. Yang, J. Am. Chem. Soc. 131, 3756 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Iran National Science Foundation (INSF), under Grant Number 93034818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghanaatshoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemi, M., Ghanaatshoar, M. Controllable growth of vertically aligned Bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs. Appl. Phys. A 122, 853 (2016). https://doi.org/10.1007/s00339-016-0389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0389-9

Keywords

Navigation