Skip to main content

Advertisement

Log in

Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Nagaprasad, K. Pravas, P. Amita, Nanoscale 2, 2631 (2010)

    Article  Google Scholar 

  2. O. Hochrein, R. Kniep, D. Zahn, Chem. Mater. 17, 1978 (2005)

    Article  Google Scholar 

  3. J. Reyes, E.L. Martínez, E.F. Brès, J. Microsc. 248, 102 (2012)

    Article  Google Scholar 

  4. L. Wang, H.G. Nancollas, Chem. Rev. 108, 4628 (2008)

    Article  Google Scholar 

  5. J. Reyes, E.F. Brès, Encycl. Anal. Chem. 1, 1–16 (2015)

    Google Scholar 

  6. H. Tsuda, J. Arends, J. Dent. Res. 73, 1703 (1994)

    Google Scholar 

  7. A. Slepko, A.A. Demkov, Phys. Rev. B 84, 1 (2011)

    Article  Google Scholar 

  8. T.S. de Araujo, S.O. de Souza, E.M.B. de Sousa, JPCS 249, 012012 (2010)

    Google Scholar 

  9. D. Predoi, M. Barsan, E. Andronescu, R.A. Vatasescu-Balcan, M. Costache, J. Optoelectron. Adv. Mater. 9, 3609 (2007)

    Google Scholar 

  10. D. Predoi, R.V. Ghita, F. Ungureanu, C.C. Negrila, R.A. Vatasescu-Balcan, M. Costache, J. Optoelectron. Adv. Mater. 9, 3827 (2007)

    Google Scholar 

  11. S. Pramanik, A. Kumar, K.N. Rai, A. Garg, Ceram. Int. 33, 419 (2007)

    Article  Google Scholar 

  12. F. Abbas, E.K. Reza, N.T. Bahman, Solid State Sci. 13, 135 (2011)

    Article  Google Scholar 

  13. B. Nasiri, P. Honarmandi, R. Ebrahimi, P. Honarmandi, Mater. Lett. 63, 543 (2009)

    Article  Google Scholar 

  14. M. Sadat, M.T. Khorasani, E. Dinpanah, A. Jamshidi, Acta Biomater. 9, 7591 (2013)

    Article  Google Scholar 

  15. K. Rajendra, P. Cheang, K.A. Khor, Acta Mater. 52, 1171 (2004)

    Article  Google Scholar 

  16. J. Wang, L.L. Shaw, Synthesis of high purity hydroxyapatite nanopowder via sol-gel combustion process. J. Mater. Sci. Mater. Med. 20, 1223–1227 (2009)

    Article  Google Scholar 

  17. M.H. Fathia, A. Hanifia, V. Mortazavi, J. Mater. Process. Technol. 202, 536 (2008)

    Article  Google Scholar 

  18. W.L. Suchanek, R.E. Riman, Adv. Sci. Technol. 45, 184 (2006)

    Article  Google Scholar 

  19. A. Liang, L. Wang, X. Yong, Z. Danlin, C. Yan, W. Guanghui, Ceram. Int. 42, 3104 (2016)

    Article  Google Scholar 

  20. W. Yingjun, Z. Shuhua, W. Kun, Z. Naru, C. Jingdi, W. Xudong, Mater. Lett. 60, 1484 (2006)

    Article  Google Scholar 

  21. L. Kaili, C. Jiang, C. Rongming, R. Meiling, Mater. Lett. 61, 1683 (2007)

    Article  Google Scholar 

  22. F. Firoozeh, S.A. Hassanzadeh, A. Jamshid, J. Magn. Magn. Mater. 382, 182 (2015)

    Article  ADS  Google Scholar 

  23. Z. Xianpeng, L. Shuyuan, L. Qing, W. Dong, Y. Zhenxing, W. Qin, D. Bin, IEEE 3, 1–4 (2009)

    Google Scholar 

  24. L. Jingbing, L. Kunwei, W. Hao, Z. Mankang, Y. Hui, Chem. Phys. Lett. 396, 429 (2004)

    Article  Google Scholar 

  25. Z. Lijie, T. Webster, Nano Today 4, 66 (2009)

    Article  Google Scholar 

  26. J. Reyes, O. Koudriavtseva, R. Herrera, A. Escobosa, MSA 6, 464 (2014)

    Article  Google Scholar 

  27. J. Lee, Y. Cheng, Critical freezing rate in freeze drying nanocrystal dispersions. J. Control. Release 111, 185 (2006)

    Article  Google Scholar 

  28. P. Wang, C. Li, H. Gong, X. Jiang, H. Wang, K. Li, Powder Technol. 203, 315 (2010)

    Article  Google Scholar 

  29. Z. Zhang (ed.), Advances in Materials Science and Engineering Series (CRC Press, 2013), p. 55

  30. M.A. Martins, C. Santos, M.M. Almeida, M.E. Costa, J. Colloid Interface Sci. 318, 210 (2008)

    Article  Google Scholar 

  31. F. Bakan, O. Laçin, H. Sarac, Powder Technol. 233, 295 (2013)

    Article  Google Scholar 

  32. A. Paz, D. Guadarrama, M. López, J. González, N. Brizuela, J. Aragón, Quím. Nova 35, 1724 (2012)

    Article  Google Scholar 

  33. S. Koutsopoulos, J. Biomed. Mater. Res. 62, 600 (2002)

    Article  Google Scholar 

  34. D.G. Nelson, B.E. Williamson, Aust. J. Chem. 35, 715 (1982)

    Article  Google Scholar 

  35. C.C. Silva, A.G. Pinheiro, M.A.R. Miranda, J.C. Góes, A.S.B. Sombra, Solid State Sci. 5, 553 (2003)

    Article  ADS  Google Scholar 

  36. R. Cusco, F. Guitian, S. De Aza, L. Artus, J. Eur. Ceram. Soc. 18, 1301 (1998)

    Article  Google Scholar 

  37. H. Li, B.S. Ng, K.A. Khor, P. Cheang, T.W. Clyne, Acta Mater. 52, 445 (2004)

    Article  Google Scholar 

  38. B. Cengiz, Y. Gokce, N. Yildiz, Z. Aktas, A. Calimli, Colloids Surf. A Physicochem. Eng. Asp. 322, 29 (2008)

    Article  Google Scholar 

  39. D. Biggemann, M. Da Silva, A. Rossi, A. Ramirez, Microsc. Microanal. 14, 433 (2008)

    Article  Google Scholar 

  40. K.C.B. Yeong, J. Wang, S.C. Ng, Biomaterials 22, 2705 (2001)

    Article  Google Scholar 

  41. I. Nishimura, Y. Huang, F. Butz, T. Ogawa, A. Lin, C.J. Wang, Nanotechnology 18, 245101 (2007)

    Article  ADS  Google Scholar 

  42. F. Vázquez, C. Mendoza, V. Altuzar, M. Meléndez, M. Santana, M.D.L.L. Olvera, Mater. Sci. Eng. B 174, 290 (2010)

    Article  Google Scholar 

  43. H. Lu, C. Campbell, D. Graham, B. Ratner, Anal. Chem. 71, 2886 (2000)

    Article  Google Scholar 

  44. N. Metoki, L. Leifenberg, W. Kopelovich, L. Burstein, M. Gozin, N. Eliaz, Mater. Lett. 119, 24 (2014)

    Article  Google Scholar 

  45. N. Eliaz, W. Kopelovtch, L. Burstein, E. Kobayashi, T. Hanawa, J. Biomed. Mater. Res. A 89A, 270 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge our gratitude to Roberto Hernández Reyes for his aid with the Electron Microscope, Antonio Morales for X-Ray measurements at IFUNAM, the financial support from DGAPA with grant PAPIIT IN108915 and ICNAM of University of Texas, San Antonio, USA, for the SEM images of the samples. Maricela Santana Vázquez thanks to CONACyT for the Ph.D. scholar fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricela Santana Vázquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, M.S., Estevez, O., Ascencio-Aguirre, F. et al. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature. Appl. Phys. A 122, 868 (2016). https://doi.org/10.1007/s00339-016-0363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0363-6

Keywords

Navigation