Skip to main content
Log in

Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Yasui, T. Morikawa, K. Nishio, H. Masuda, Patterned magnetic recording media using anodic porous alumina with single domain hole configurations of 63 nm hole interval. Jpn. J. Appl. Phys. 44, L469 (2005)

    Article  ADS  Google Scholar 

  2. S. Zhang, L. Wang, C. Xu, A. Li, L. Chen, D. Yang, Fabrication of Ni–NiO–Cu metal-insulator-metal tunnel diodes via anodic aluminum oxide templates. ECS Solid State Lett. 2, Q1 (2013)

    Article  ADS  Google Scholar 

  3. G. Macias, L.P. Hernandes-Eguia, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. ACS Appl. Mater. Interfaces 5, 8093 (2013)

    Article  Google Scholar 

  4. R. Karmhag, R. Tesfamichael, E. Wackelgard, G.A. Niklasson, M. Nygren, Oxidation kinetics of nickel particles: comparaison between free particles and particules in an oxide matrix. Sol. Energy 68, 329 (2000)

    Article  ADS  Google Scholar 

  5. H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio, Lasing from two-dimensional photonic crystals using anodic porous alumina. Adv. Mater. 18, 213 (2006)

    Article  Google Scholar 

  6. T. Kikuchi, Y. Wachi, T. Takahashi, M. Sakairi, R.O. Suzuki, Fabrication of a meniscus microlens array made of anodic alumina by laser irradiation and electrochemical techniques. Electrochim. Acta 94, 269 (2013)

    Article  Google Scholar 

  7. T. Kondo, H. Masuda, K. Nishio, SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina. J. Phys. Chem. C 117, 2531 (2013)

    Article  Google Scholar 

  8. T. Kikuchi, Y. Wachi, M. Sakairi, R.O. Suzuki, Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution. Microelectron. Eng. 111, 14 (2013)

    Article  Google Scholar 

  9. J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J.K. Jain, N. Samarth, T.E. Mallouk, M.H.W. Chan, Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nat. Phys. 6, 389 (2010)

    Article  Google Scholar 

  10. N. Cabrera, N.F. Mott, Theory of the oxidation of metals. Rep. Prog. Phys. 12, 163 (1949)

    Article  ADS  Google Scholar 

  11. A. Mozalev, A. Poznyak, I. Mozaleva, A.W. Hassel, The voltage-time behaviour for porous anodizing of aluminum in a fluoride-containing oxalic acid electrolyte. Electrochem. Commun. 3, 299 (2001)

    Article  Google Scholar 

  12. A. Keshavarz, Z. Parang, A. Nasseri, The effect of sulfuric acid, oxalic acid, and their combination on the size and regularity of the porous alumina by anodization. J. Nanostruct. Chem. 3, 34 (2013)

    Article  Google Scholar 

  13. M.K. Jr McQuaig, A. Toro, W.V. Geertruyden, W.Z. Misiolek, The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide. J. Mater. Sci. 46, 243 (2011)

    Article  ADS  Google Scholar 

  14. A.K. Sharma, H. Bhojaraj, Thermoanalytical studies of anodic oxide coatings on aluminum. Plat. Surf. Finish. 76, 59 (1989)

    Google Scholar 

  15. A. Jagminas, M. Kurtinaitiene, R. Angelucci, G. Valincius, Modification of alumina barrier-layer through re-anodization in an oxalic acid solution with fluoride additives. Appl. Surf. Sci. 252, 2360 (2006)

    Article  ADS  Google Scholar 

  16. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997)

    Article  ADS  Google Scholar 

  17. H. Asoh, S. Ono, T. Hirose, M. Nakao, H. Masuda, Growth of anodic porous alumina with square cells. Electrochim. Acta 48, 3171 (2003)

    Article  Google Scholar 

  18. W. Fei, S.C. Kuiry, S. Seal, K. Scammon, N. Quick, M. June, High temperature surface oxidation of metallic fibres for hot gas filtration. Surf. Eng. 18, 197 (2002)

    Article  Google Scholar 

  19. S. Chevalier, A. Galerie, O. Heintz, R. Chassagnon, A. Crisci, Thermal alumina scales on FeCrAl: characterization and growth mechanism. Mater. Sci. Forum 595, 915 (2008)

    Article  Google Scholar 

  20. B.R. Strohmeier, Surface characterization of aluminum foil annealed in the presence of ammonium fluoborate. Appl. Surf. Sci. 40, 249 (1989)

    Article  ADS  Google Scholar 

  21. J.R. Lindsay, H.J. Rose, W.E. Swartz, P.H. Watts, K.A. Rayburn, X-ray photoelectron spectra of aluminum oxides: structural effects on the “chemical shift”. J. Appl. Spectrosc. 27, 1 (1973)

    Article  ADS  Google Scholar 

  22. K. Schimizu, K. Kobayashi, G.E. Thompson, P. Skeldon, G.C. Wood, Anodic oxide films on tantalum: incorporation and mobilities of electrolyte-derived species. Philosophi. Mag. Part B 73, 461 (1996)

    Article  ADS  Google Scholar 

  23. K. Schimizu, K. Kobayashi, G.E. Thompson, P. Skeldon, G.C. Wood, The migration of fluoride ions in growing anodic oxide films on tantalum. J. Electrochem. Soc. 144, 418 (1997)

    Article  Google Scholar 

  24. A. Jagminas, I. Vrublevsky, J. Kuzmarskyte, V. Jasulaitiene, Composition, structure and electrical properties of alumina barrier layers grown in fluoride-containing oxalic acid solutions. Acta Mater. 56, 1390 (2008)

    Article  Google Scholar 

  25. T. Kumeria, A. Santos, D. Losic, Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications. Sensors 14, 11878 (2014)

    Article  Google Scholar 

  26. K.M. Chahrour, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, M.A. Qaeed, Controllable fabrication of highly ordered thin AAO template on Si substrate for electrodeposition of nanostructures. Appl. Phys. A 116, 1389 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhahri, S., Fazio, E., Barreca, F. et al. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution. Appl. Phys. A 122, 746 (2016). https://doi.org/10.1007/s00339-016-0280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0280-8

Keywords

Navigation