Skip to main content
Log in

Superconductivity and mechanical properties of SmBa2Cu3O7−δ added with nano-crystalline ZnFe2O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of nanosized ZnFe2O4 addition on the physical properties of polycrystalline SmBa2Cu3O7–δ superconductor was studied. Superconducting samples of the type (ZnFe2O4) x SmBa2Cu3O7−δ, x = 0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15 and 0.20 wt% were prepared by the solid-state reaction method. The characterization and superconductivity investigation were carried out using X-ray powder diffraction, XRD, scanning electron microscope, SEM, energy-dispersive X-ray, EDX, dc electrical resistivity and transport critical current density at 77 K. Improvements in the volume fraction, superconducting transition temperature, Tc, and transport critical current density, Jc, were observed as x increased from 0.00 up to 0.08 wt% and then they decreased with further increase in nanosized ZnFe2O4 addition. The Vickers microhardness number, H v, and elastic parameters have been measured at room temperature. The ultrasonic pulse-echo technique at 4 MHz was used to determine the elastic parameters. H v and the elastic parameters were observed to increase with increasing x. The enhancement of the elastic parameters may be due to the hindrance of dislocation motion with nanosized ZnFe2O4 addition. Moreover, Debye temperatures (θ D) were calculated and it was found that their values increased with increasing nanosized ZnFe2O4 addition. The elastic parameters of the samples were computed and corrected to zero porosity using different models. Finally, the relationship between Young’s modulus and H v was estimated for different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.R. Hull, M. Murakami, Proc. IEEE 92, 1705 (2004)

    Article  Google Scholar 

  2. A. Nigro, G. Grimaldi, B. Savo, S. Pace, M.A. Boffa, A.M. Cucolo, Phys. C 401, 277 (2004)

    Article  ADS  Google Scholar 

  3. T. Matsushita, Supercond. Sci. Technol. 13, 730 (2000)

    Article  ADS  Google Scholar 

  4. T. Matsushita, E.S. Otabe, Phys. C 335, 153 (2000)

    Article  ADS  Google Scholar 

  5. R. Fuger, M. Eisterer, S.S. Oh, H.W. Weber, Physica C 470, 323–325 (2010)

    Article  ADS  Google Scholar 

  6. U. Mizutani, H. Ikuta, T. Hosokawa, H. Ishihara, K. Tazoe, T. Oka, Y. Itoh, Y. Yanagi, M. Yoshikawa, Supercond. Sci. Technol. 13, 836 (2000)

    Article  ADS  Google Scholar 

  7. T. Oka, Y. Itoh, Y. Yanagi, M. Yoshikawa, H. Ikuta, U. Mizutani, Phys. C 335, 101 (2000)

    Article  ADS  Google Scholar 

  8. M. Abdioglu, K. Ozturk, S. Kutuk, S. Bolat, E. Yanmaz, J. Supercond. Nov. Magn. 25, 923 (2012)

    Article  Google Scholar 

  9. T. Nakamura, Y. Itoh, M. Yoshikawa, T. Oka, J. Uzawa, Concept Magn. Reson. B31, 65 (2007)

    Article  Google Scholar 

  10. C. Krauns, M. Sumida, M. Tagami, Y. Yamada, Y. Shiohara, Z. Phys, B 96, 207 (1994)

    Google Scholar 

  11. B. Hellebrand, R.A. Gunasekaran, P.L. Steger, D. Bauerle, Appl. Phys. A 65, 235 (1997)

    Article  ADS  Google Scholar 

  12. D. Larbalestier, A. Gurevich, D. Matthew, Feldmann, A. Polyanskii. Nature (London) 414, 368 (2001)

    Article  ADS  Google Scholar 

  13. L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991)

    Article  ADS  Google Scholar 

  14. A. Hu, I. Hirabayashi, M. Winter, M.R. Koblischka, U. Hartmann, H. Zhou, Appl. Phys. Lett. 86, 092505 (2005)

    Article  ADS  Google Scholar 

  15. B.A. Albiss, N. Al-Rawashdeh, A.A. Jabal, M. Gharaibeh, I.M. Obaidat, M.K. Hasan, K.A. Azez, J. Supercond. Nov. Magn. 23, 1333 (2010)

    Article  Google Scholar 

  16. T.A. Campbell, T.J. Haugan, I. Maartense, J. Murphy, L. Brunke, P.N. Barnes, Phys. C 423, 1 (2005)

    Article  ADS  Google Scholar 

  17. N.A. Khan, S. Aziz, J. Alloys. Compd. 538, 183 (2012)

    Article  Google Scholar 

  18. S. Dadras, Y. Liu, Y.S. Chai, V. Daadmehr, K.H. Kim, Phys. C 469, 55 (2009)

    Article  ADS  Google Scholar 

  19. A. Snezhko, T. Prozorov, R. Prozorov, Phys. Rev. B 71, 024527 (2005)

    Article  ADS  Google Scholar 

  20. L.N. Bulaevskii, E.M. Chundnovsky, M.P. Maley, Appl. Phys. Lett. 76, 2594 (2000)

    Article  ADS  Google Scholar 

  21. M. Arias, V.M. Pantojas, O. Perales, W. Otaño, J. Magn. Magn. Mater. 323, 2109 (2011)

    Article  ADS  Google Scholar 

  22. M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Solid State Commun. 151, 1031 (2011)

    Article  ADS  Google Scholar 

  23. R.M. Sebastian, S. Xavier, E.M. Mohammed, J. Nanomater. Mol. Nanotechnol. 4, 2 (2015). doi:10.4172/2324-8777.1000158

    Google Scholar 

  24. C.S. Xavier, R.A. Candeia, M.I.B. Bernardi, S.J.G. Lima, E. Longo, C.A. Paskocimas, L.E.B. Soledade, A.G. Souza, I.M.G. Santos, J. Therm. Anal. Calorim. 87, 709 (2007)

    Article  Google Scholar 

  25. A.N. Birgani, M. Niyaifar, A. Hasanpour, J. Magn. Magn. Mater. 374, 179 (2015)

    Article  ADS  Google Scholar 

  26. S.A. Khorrami, G. Mahmoudzadeh, S.S. Madani, F. Gharib, J. Ceram. Proc. Res. 12, 504 (2011)

    Google Scholar 

  27. R. Ping, Z. Junxi, D. Huiyong, J. Wuhan Univ. Technol. 24, 927 (2009)

    Article  Google Scholar 

  28. M. Hafiz, R. Abd-Shukor, J. Appl. Phys. A 120, 1573 (2015)

    Article  ADS  Google Scholar 

  29. W. Kong, R. Abd-Shukor, J. Supercond. Nov. Magn. 23, 257 (2010)

    Article  Google Scholar 

  30. M. Mumtaz, S. Naeem, K. Nadeem, F. Naeem, A. Jabbar, Y.R. Zheng, N.A. Khan, M. Imran, Solid State Sci. 22, 21 (2013)

    Article  ADS  Google Scholar 

  31. M. Tomita, M. Murakami, Nature 421, 517 (2003)

    Article  ADS  Google Scholar 

  32. B. Ozkurt, J. Mater. Sci.: Mater. Electron. 24, 758 (2013)

    Google Scholar 

  33. N.A. Hamid, N.F. Shamsudin, Adv. Mater. Res. 545, 387–392 (2012)

    Article  Google Scholar 

  34. R. Awad, A.I. Abou Aly, N.H. Mohammed, S. Isber, H.A. Motaweh, D. El-Said Bakeer, J. Alloys Compd. 610, 614 (2014)

    Article  Google Scholar 

  35. R. Awad, A.I. Abou Aly, N.H. Mohammed, H.A. Motaweh, D. El-Said Bakeer. J. Supercond. Nov. Magn. 27, 1757 (2014)

    Article  Google Scholar 

  36. M.S.M. Suan, M.R. Johan, Mater. Res. Innov. 18, 73 (2014)

    Article  Google Scholar 

  37. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, J. Magn. Magn. Mater. 298, 83 (2006)

    Article  ADS  Google Scholar 

  38. M.M. Elokr, R. Awad, A. Abd El-Ghany, A. Abou Shama, A. Abd El-wanis, J. Supercond. Nov. Magn. 24, 1345 (2011)

    Article  Google Scholar 

  39. R. Raeisi Shahraki, M. Ebrahimi, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, J. Magn. Magn. Mater. 324, 3762 (2012)

    Article  ADS  Google Scholar 

  40. E.M. Mohammed, K.A. Malini, P. Kurian, M.R. Anantharaman, Mater. Res. Bull. 37, 753 (2002)

    Article  Google Scholar 

  41. T. Sato, K. Haneda, M. Seki, T. Iijima, Appl. Phys. A 50, 13 (1990)

    Article  ADS  Google Scholar 

  42. F. Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater. 309, 295 (2007)

    Article  ADS  Google Scholar 

  43. G.F. Goya, H.R. Rechenberg, J. Magn. Magn. Mater. 196, 191 (1999)

    Article  ADS  Google Scholar 

  44. S.N. Abd-Ghani, R. Abd-Shukor, W. Kong, Adv. Mater. Res. 501, 309 (2012)

    Article  Google Scholar 

  45. B.A. Albiss, N. Al-Rawashdeh, A. Abu Jabal, M. Gharaibeh, I.M. Obaidat, M.K. Hasan, K.A. Azez, J. Supercond. Nov. Magn. 23, 1333 (2010)

    Article  Google Scholar 

  46. M. Sahoo, D. Behera, J. Material. Sci. Eng. 1, 115 (2012)

    Google Scholar 

  47. S.M. Rao, J.K. Srivastava, K.S. Law, R.H. Chang, H.I. Chung, M.K. Wu, Supercond. Sci. Technol. 14, 958 (2001)

    Article  ADS  Google Scholar 

  48. H. Salamati, P. Kameli, Solid State Commun. 125, 407 (2003)

    Article  ADS  Google Scholar 

  49. L. Rong, C. Xianhui, C. Zuyao, Q. Yitai, X. Jiansheng, W. Shunxi, Z. Weimin, M. Jun, Z. Qirui, Solid State Commun. 72, 1173 (1989)

    Article  ADS  Google Scholar 

  50. K. Nadeem, F. Naeem, M. Mumtaz, S. Naeem, A. Jabbar, I. Qasim, N.A. Khan, Ceram. Int. 40, 13819 (2014)

    Article  Google Scholar 

  51. A.G. Kozorezov, A.A. Golubov, J.K. Wigmore, D. Martin, P. Verhoeve, R.A. Hijmering, I. Jerjen, Phys. Rev. B 78, 174501 (2008)

    Article  ADS  Google Scholar 

  52. M. Miura, M. Itoh, Y. Ichino, Y. Yoshida, Y. Takai, K. Matsumoto, A. Ichinose, S. Horii, M. Mukaida, IEEE Trans. Appl. Supercond. 15, 3078 (2005)

    Article  Google Scholar 

  53. P. Sunwong, J.S. Higgins, Y. Tsui, M.J. Raine, D.P. Hampshire, Supercond. Sci. Technol. 26, 095006 (2013)

    Article  ADS  Google Scholar 

  54. Y. Xu, M. Izumi, Y.F. Zhang, Y. Kimura, Phys. C 469, 1215 (2009)

    Article  ADS  Google Scholar 

  55. C. Hays, E.G. Kendall, Metallography 6, 275 (1973)

    Article  Google Scholar 

  56. S.M. Khalil, J. Phys. Chem. Solids 62, 457 (2001)

    Article  ADS  Google Scholar 

  57. S.P. Dodd, M. Cankurtaran, B. James, J. Mater. Sci. 38, 1107 (2003)

    Article  ADS  Google Scholar 

  58. R.R. Reddy, P.V. Reddy, Phys. C 265, 96 (1996)

    Article  ADS  Google Scholar 

  59. M. Levy, M. Xu, B.K. Sarma, K.J. Sun, Physical Acoustics (XX) Ultrasonic of High-TC and other Unconventional Superconductors (Academics Press, New York, 1992), p. 295

  60. D. Ravinder, T.A. Manga, Mater. Lett. 41, 254 (1999)

    Article  Google Scholar 

  61. B. Raj, V. Rajendran, P. Palanichamy, Science and Technology of Ultrasonics (Narosa Publ. House, New Delhi, 2004), p. 250

  62. P.V. Reddy, S. Shekar, K. Somaiah, Mater. Lett. 21, 21–29 (1994)

    Article  Google Scholar 

  63. W.A. Wooster, Rep. Prog. Phys. 16, 62 (1953)

    Article  ADS  Google Scholar 

  64. M.B. Solunke, K.B. Modi, V.K. Lakhani, K.B. Zankat, P.U. Sharma, P.V. Reddy, S.S. Shah, Ind. J. Pure Appl. Phys. 45, 764 (2007)

    Google Scholar 

  65. D.P.H. Hasselman, R.M. Fulrath, J. Am. Ceram. Soc. 47, 52 (1964)

    Article  Google Scholar 

  66. H. Ledbetter, S.K. Datta, J. Acoust. Soc. Am. 79, 239 (1986)

    Article  ADS  Google Scholar 

  67. N. Ramakrishnan, V.S. Arunachalam, J. Mater. Sci. 25, 3930 (1990)

    Article  ADS  Google Scholar 

  68. K.K. Phani, J. Mater. Sci. Lett. 5, 747 (1986)

    Article  Google Scholar 

  69. A.S. Wagh, J.P. Singh, R.B. Poeppel, J. Mater. Sci. 28, 3589 (1993)

    Article  ADS  Google Scholar 

  70. C. Veerender, V.R. Dumke, M. Nagabhooshnam, Phys. Status Solidi A 144, 299 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors of the present study wish to express their thanks to the members of the superconductivity and the metallic glass lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt, for aiding with the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Abdeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdeen, W., El Tahan, A., Awad, R. et al. Superconductivity and mechanical properties of SmBa2Cu3O7−δ added with nano-crystalline ZnFe2O4 . Appl. Phys. A 122, 574 (2016). https://doi.org/10.1007/s00339-016-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0101-0

Keywords

Navigation