Skip to main content

Advertisement

Log in

Improved power transfer to wearable systems through stretchable magnetic composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Rogers, T. Someya, Y. Huang, Science 327, 1603 (2010)

    Article  ADS  Google Scholar 

  2. S.Y.R. Hui, W. Zhong, C.K. Lee, I.E.E.E. Trans, Power Electron. 29, 4500 (2014)

    Article  Google Scholar 

  3. R. Kim, H. Tao, T. Kim, Y. Zhang, S. Kim, B. Panilaitis, M. Yang, D. Kim, Y.H. Jung, B. Kim, Y. Li, Y. Huang, F.G. Omenetto, J.A. Rogers, Small 8, 2812 (2012)

    Article  Google Scholar 

  4. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Lia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, J.A. Rogers, Nat. Commun. 4, 1534 (2013)

    Article  Google Scholar 

  5. D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. Chung, H. Keum, M. McCormick, P. Liu, Y. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Science 333, 838 (2011)

    Article  ADS  Google Scholar 

  6. A. Qusba, A.K. RamRakhyani, J. So, G.J. Hayes, M.D. Dickey, G. Lazzi, IEEE Sens. J. 14, 1074 (2014)

    Article  Google Scholar 

  7. S.H. Jeong, K. Hjort, Z. Wu, Sci. Rep. 5, 8419 (2015)

    Article  ADS  Google Scholar 

  8. N. Lazarus, C.D. Meyer, W.J. Turner, RSC Adv. 5, 78695 (2015)

    Article  Google Scholar 

  9. J. Kim, J. Kim, S. Kong, H. Kim, I. Suh, N.P. Suh, D. Cho, J. Kim, S. Ahn, Proc. IEEE 101, 1332 (2013)

    Article  Google Scholar 

  10. D. Mishra, S. Sitaraman, S. Gandhi, S. Teng, P.M. Raj, H. Sharma, R. Tummala, T.N. Arunagiri, Z. Dordi, R. Mullapudi, in IEEE 65th Electronic Components and Technology Conference (ECTC), 26–29 May 2015, San Diego, CA (IEEE, 2015), pp. 941–945

  11. R. Bosshard, J. Muhlethaler, J.W. Kolar, I. Stevanovic, in 28th Annual IEEE Applied Power Electronics and Exposition (APEC), 17–21 Mar 2013, Long Beach, CA, USA (IEEE, 2013), pp. 1812–1819

  12. G.E. Fish, Proc. IEEE 78, 947 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.H. Jeong, Z. Wu, in 28th IEEE International Conferennce on Micro Electro Mechanical Systems (MEMS), 18–22 Jan 2015, Estoril (IEEE, 2015), pp. 1137–1140

  14. N. Lazarus, C.D. Meyer, S.S. Bedair, G.A. Slipher, I.M. Kierzewski, A.C.S. Appl, Mater. Interfaces 7, 10080 (2015)

    Article  Google Scholar 

  15. Magnetic Powders Datasheet, Steward Advanced Materials (Chattanooga, 2013)

  16. H.H. Helms, E. Adams, J. Appl. Phys. 35, 871 (1964)

    Article  ADS  Google Scholar 

  17. H. Reuther, Hyperfine Interact. 111, 135 (1998)

    Article  ADS  Google Scholar 

  18. O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)

    Article  Google Scholar 

  19. S. Cheng, Z. Wu, Lab Chip 12, 2782 (2012)

    Article  Google Scholar 

  20. N.E. Cusack, Phys. Rev. B 1, 1370 (1970)

    Article  Google Scholar 

  21. C.P. Yue, S.S. Wong, I.E.E.E. Trans, Electron Dev. 47, 560 (2000)

    Article  ADS  Google Scholar 

  22. S. Han, D.D. Wentzloff, in IEEE International 3D Systems Integration Conference (3DIC), 16–18 Nov 2010, Munich (IEEE, 2010), pp. 1–5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lazarus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarus, N., Bedair, S.S. Improved power transfer to wearable systems through stretchable magnetic composites. Appl. Phys. A 122, 543 (2016). https://doi.org/10.1007/s00339-016-0067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0067-y

Keywords

Navigation