Skip to main content
Log in

Monitoring of self-healing phenomena towards enhanced sustainability of historic mortars

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mortars are known for their ability to heal their defects in an autogenic way. This phenomenon is expressed by the filling of microcracks by secondary products, restoring or enhancing the material’s performance. Parameterization of self-healing phenomenon could be a key factor for the enhanced sustainability of these materials in terms of reduced repair cost and consumption of natural raw materials and thus reduced environmental fingerprint. The fact that this phenomenon takes place autogenously suggests that the material can self-repair its defects, without external intervention, thus leading to a prolonged life cycle. In the present study, the autogenic self-healing phenomenon was studied in natural hydraulic lime mortars, considering aspects of curing time before initial cracking, duration and conditions of the healing period. Furthermore, strength recovery due to autogenic self-healing was measured under high humidity conditions, and thermo-gravimetric analysis (DTA/TG) was performed in all specimens in order to quantitatively assess the available unreacted components in the binder at all ages. Regarding the microstructure of the healing phases, the main products formed during healing consist of calcite and various C–S–H/C–A–H phases. Depending on the parameters mentioned above, there is a wide diversity in the intensity, typology and topography of the secondary phases inside the cracks. The main differences discussed were observed between specimens cracked at very early age and those damaged after 30 days of curing. Similarly, the mechanical properties of the crack-healed specimens were associated with the above findings and especially with the available each-time amount of lime, determined by thermo-gravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Rehan, M. Nehdi, Environ. Sci. Policy 8, 105 (2005). doi:10.1016/j.envsci.2004.12.006

    Article  Google Scholar 

  2. K. van Breugel, in Proceedings of the 1st International Conference on Self-healing Materials, vol. 10 (Noordwijk, 2007)

  3. C. Sabbioni, G. Zappia, C. Riontino, M.T. Blanco-Varela, J. Aguilera, F. Puertas, K. Van Balen, E.E. Toumbakari, Atmos. Environ. (2001). doi:10.1016/S1352-2310(00)00310-1

    Google Scholar 

  4. K. Pye, N. Schiavon, Nature (1989). doi:10.1038/342663a0

    Google Scholar 

  5. N. Schiavon, G. Chiavari, D. Fabbri, Environ. Geol. (2004). doi:10.1007/s00254-004-1046-8

    Google Scholar 

  6. B. Lubelli, T.G. Nijland, R.P.J. Van Hees, Heron 56, 75 (2011)

    Google Scholar 

  7. G.W. Hyde, W.J. Smith, J. Frankl. Inst. Phila. 128, 199 (1889)

    Article  Google Scholar 

  8. Z. Lv, D. Chen, Mater. Constr. 64, 316 (2014). doi:10.3989/mc.2014.05313

    Article  Google Scholar 

  9. K. Van Tittelboom, N. De Belie, Materials 6, 2182 (2013). doi:10.3390/ma6062182

    Article  ADS  Google Scholar 

  10. M. R. de Rooij, E. Schlangen, C. Joseph, in Self-healing Phenomena in Cement-Based Materials, ed. by M. de Rooij, K. Van Tittelboom, N. De Belie, E. Schlangen. Introduction, (RILEM State-of-the-Art Reports 11. Springer, Netherlands, 2013), pp. 1–17

  11. C. Edvardsen, ACI Mater. J. 96, 448 (1999)

    Google Scholar 

  12. A. Neville, Concr. Int. 24, 76 (2002)

    Google Scholar 

  13. R.K. Dhir, C.M. Sangha, J.G.L. Munday, ACI J. Proc. 70, 231 (1973). doi:10.14359/11202

    Google Scholar 

  14. H. He, Z. Guo, P. Stroeven, M. Stroeven, L.J. Sluys, Image Anal. Stereol. 26, 137 (2007)

    Article  Google Scholar 

  15. K.R. Lauer, F.O. Slate, ACI J. Proc. 52, 1083 (1956). doi:10.14359/11661

    Google Scholar 

  16. H. Huang, G. Ye, J. Intell. Mater. Syst. Struct. (2014). doi:10.1177/1045389X14525490

    Google Scholar 

  17. F. Adenot, M. Buil. Cem. Concr. Res., in Special Double Issue Proceedings of Symposium D of the E-MRS Fall Meeting 1991, vol 22 (1992), p. 489

  18. P. Faucon, F. Adenot, M. Jorda, R. Cabrillac, Mater. Struct. (1997). doi:10.1007/BF02524776

    Google Scholar 

  19. F.P. Glasser, J. Marchand, E. Samson, Cem. Concr. Res. (2008). doi:10.1016/j.cemconres.2007.09.015

    Google Scholar 

  20. T. Nijland, J. Larbi, R.P.J. van Hees, B. Lubelli, M.de Rooij, in Proceedings of the first International Conference on Self-healing Materials, vol 18 (Noordwijk, 2007)

  21. N. Hearn, C.T. Morley, Mater. Struct. 30, 404 (1997). doi:10.1007/BF02498563

    Article  Google Scholar 

  22. K. Van Tittelboom, E. Gruyaert, H. Rahier, N. De Belie, Constr. Build Mater. (2012). doi:10.1016/j.conbuildmat.2012.07.026

    Google Scholar 

  23. M. Luo, C. Qian, R. Li, Constr. Build Mater. (2015). doi:10.1016/j.conbuildmat.2015.03.117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amenta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amenta, M., Karatasios, I., Maravelaki, P. et al. Monitoring of self-healing phenomena towards enhanced sustainability of historic mortars. Appl. Phys. A 122, 554 (2016). https://doi.org/10.1007/s00339-016-0064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0064-1

Keywords

Navigation