Skip to main content

Self-healing Capacities of Mortars with Crystalline Admixtures

  • Conference paper
  • First Online:
Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020) (RSCC 2020)

Part of the book series: RILEM Bookseries ((RILEM,volume 34))

Included in the following conference series:

  • 712 Accesses

Abstract

The aim of this research study consists of determining the self-healing capacities of cement-based materials incorporating Crystalline Admixtures (CA) such as permeability and shrinkage reducers. Mortars with three different types of CA were studied. At 28 days old, specimens were cracked by means of a three-point bending test to obtain a single crack characterized by a width varying from between 120 and 200 \(\upmu \)m. Thereafter, the specimens were kept under water and the self-healing process was monitored by means of the crack width and area measurements at 35 and 120 days after cracking. From these first experimental results, it appears that specimens without CA and with calcium sulphate are characterized by a higher healing rate. This difference of behavior between the mortar mixtures is probably related to their microstructure. To confirm this hypothesis, their hydration products and their porosity were characterized at 28 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Escoffres, P., Desmettre, C., Charron, J.-P.: Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Construct. Build. Mater. 173, 763–774 (2018)

    Article  Google Scholar 

  2. Neville, A.: Chloride attack of reinforced concrete: an overview. Mater. Struct. 28, 63–70 (1995)

    Article  Google Scholar 

  3. Van Breugel, K.: Is there a market for self-healing cement based materials? In: Proceedings of the First International Conference on Self Healing Materials, The Netherlands, 18–20 April 2007

    Google Scholar 

  4. Hearn, N.: Self-sealing, autogenous healing and continued hydration: what is the difference? Mater. Struct. 31, 567–653 (1998)

    Article  Google Scholar 

  5. Neville, A.: Autogenous healing, a concrete miracle? Concr. Int. 24 (2002)

    Google Scholar 

  6. Edvardsen, C.: Water permeability and autogenous healing of cracks in concrete. ACI Mater. J. 448–454 (1999)

    Google Scholar 

  7. Dry, C.: Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater. Struct. 3, 118–123 (1994)

    Article  Google Scholar 

  8. Dry, C.M.: Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability. Cement Concr. Res. 30, 1969–1977 (2000)

    Article  Google Scholar 

  9. Dry, C., McMillan, W.: Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater. Struct. 5, 297–300 (1996)

    Article  Google Scholar 

  10. Sisomphon, K., Copuroglu, O., Koenders, E.A.B.: Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cement Concr. Compos. 34, 566–574 (2012)

    Article  Google Scholar 

  11. Cuenca, E., Tejedor, A., Ferrara, L.: A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Construct. Build. Mater. 179, 619–632 (2018)

    Article  Google Scholar 

  12. Huang, H., Ye, G., Qian, C., Schlangenb, E.: Self-healing in cementitious materials: materials, methods and service conditions. Mater. Design 92, 499–511 (2016)

    Article  Google Scholar 

  13. Van Tittelboom, K., Gruyaert, E., Rahier, H.De, Belie, N.: Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Construct. Build. Mater. 37, 349–359 (2012)

    Article  Google Scholar 

  14. Olivier, K.: Etude expérimentale et modélisation de l’auto-cicatrisation des matériaux cimentaires avec additions minérales. Génie Civil. Université de Sherbrooke et Université de Paris Saclay, Thèse de doctorat (2016)

    Google Scholar 

  15. Jaroenratanapirom, D., Sahamitmongkol, R.: Self-crack closing ability of mortar with different additives. J. Metals Mater. Miner. 21, 9–17 (2011)

    Google Scholar 

  16. Termkhajornkit, P., Nawa, T., Yamashiro, Y., Saito, T.: Self-healing ability of fly ash-cement systems. Cement Concr. Compos. 31, 195–203 (2009)

    Article  Google Scholar 

  17. Qian, S., Zhou, J., a, De Rooij, M.R., Schlangen, E., Ye, G., Van Breugel, K.: Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cement Concr. Compos. 31, 613–621 (2009)

    Google Scholar 

  18. Hung, C.-C., Su, Y.-F., Su, Y.-M.: Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Compos. Part B 133, 15–25 (2018)

    Article  Google Scholar 

  19. Roig-Flores, M., Moscato, S., Serna, P., Ferrara, L.: Self-healing capability of concrete with crystalline admixtures in different environments. Construct. Build. Mater. 86, 1–11 (2015)

    Article  Google Scholar 

  20. Ferrara, L., Krelani, V., Carsana, M.: A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Construct. Build. Mater. 68, 535–551 (2014)

    Article  Google Scholar 

  21. Sisomphon, K., Copuroglu, O., Koenders, E.A.B.: Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Construct. Build. Mater. 42, 217–224 (2013)

    Article  Google Scholar 

  22. Roig-Flores, M., Pirritano, F., Serna, P., Ferrara, L.: Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Construct. Build. Mater. 114, 447–457 (2016)

    Article  Google Scholar 

  23. American Concrete Institute ACI Comittee 212. Report on Chemical Admixtures for Concrete (2010)

    Google Scholar 

  24. Qureshi, T., Kanellopoulos, A., Al-Tabbaa, A.: Autogenous self-healing of cement with expansive minerals-I: impact in early age crack healing. Construct. Build. Mater. 192, 768–784 (2018)

    Article  Google Scholar 

  25. Sherir, M.A.A., Hossain, K.M.A., Lachemi, M.: Self-healing and expansion characteristics of cementitious composites with high volume fly ash and MgO-type expansive agent. Construct. Build. Mater. 127, 80–92 (2016)

    Article  Google Scholar 

  26. Sherir, M.A.A., Hossain, K.M.A., Lachemi, M.: The influence of MgO-type expansive agent incorporated in self-healing system of engineered cementitious Composites. Construct. Build. Mater. 149, 164–185 (2017)

    Article  Google Scholar 

  27. Yang, L., Shi, C., Wu, Z.: Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete—a review. Compos. Part B 178, 107456 (2019)

    Google Scholar 

  28. Zhang, Y., Teramoto, A., Ohkubo, T.: Effect of addition rate of expansive additive on autogenous shrinkage and delayed expansion of ultra-high strength mortar. J. Adv. Concr. Technol. 16, 250–261 (2018)

    Article  Google Scholar 

  29. Pei, Y.: Effets du chauffage sur les matériaux cimentaires - impact du “self-healing” sur les propriétés de transfert. Génie Civil. Ecole Centrale de Lille, Thèse de doctorat (2016)

    Google Scholar 

  30. Wang, J.A., Novaro, O., Bokhimi, X., Lopez, T., Gomez, R., Navarrete, J., Llanos, M.E., Lopez-Salinas, E.: Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Mater. Lett. 35, 317–323 (1998)

    Article  Google Scholar 

  31. Alonso, C., Fernandez, L.: Dehydration and rehydration processes of cement paste exposed to high temperature environments. J. Mater. Sci. 3015–3024 (2004)

    Google Scholar 

  32. Moretti, J.P., Sales, A., Quarcioni, V.A., Silva, D.C., Oliveira, M.C., Pinto, N.S., Ramos, L.W.: Pore size distribution of mortars produced with agroindustrial waste. J. Clean. Product. 187, 473–484 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Ammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ammar, L., Hannawi, K., Darquennes, A. (2022). Self-healing Capacities of Mortars with Crystalline Admixtures. In: Sena-Cruz, J., Correia, L., Azenha, M. (eds) Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020). RSCC 2020. RILEM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-76465-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76465-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76464-7

  • Online ISBN: 978-3-030-76465-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics