Skip to main content
Log in

Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal–insulator–semiconductor (MIS) diode at high temperature range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical and transport mechanisms of a fabricated Au/Ba0.6Sr0.4TiO3 (BST)/GaN metal–insulator–semiconductor (MIS) diode have been studied in the temperature range of 280–430 K by current–voltage (IV) and capacitance–voltage (CV) measurements. The barrier heights (BHs) of the Au/BST/GaN MIS diode are found to be 0.85 eV (IV)/1.35 (CV) at 280 K and 1.14 eV (IV)/1.17 (CV) at 430 K. The series resistance (R S) values determined by Cheung’s functions are in good agreement with each other. The difference between BHs estimated by IV and CV methods are also discussed. Results show that the estimated interface state density (N SS) of MIS diode decreases with an increase in temperature. Observations have indicated that the BH increases whereas ideality factor R S and N SS decreases with increasing temperature. Results have demonstrated that the reverse leakage current is dominated by Poole–Frenkel emission at temperatures of 280–340 K and by Schottky emission at temperatures of 370–430 K. It is also noted that there is a transition of the conduction mechanism in Au/BST/GaN MIS diode from Poole–Frenkel to Schottky emission at temperatures of 340–370 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Asif Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Bourn, W. Schaff, Appl. Phys. Lett. 66, 1083 (1992)

    Article  Google Scholar 

  2. H.-S. Kang, M.S.P. Reddy, D.-S. Kim, K.-W. Kim, J.-B. Ha, Y.-S. Lee, H.-C. Choi, J.-H. Lee, J. Phys. D Appl. Phys. 46, 155101 (2013)

    Article  ADS  Google Scholar 

  3. M. Asif Khan, A. Bhattaraj, J.N. Kkuznia, D.T. Olson, Appl. Phys. Lett. 63, 1214 (1993)

    Article  ADS  Google Scholar 

  4. S. Pearton, J. Mater. Sci. Eng. B 82, 227 (2001)

    Article  Google Scholar 

  5. Z. Tekeli, S. Altindal, M. Cakmak, S. Ozcelik, D. Caliskan, E. Ozbay, J. Appl. Phys. 102, 054510 (2007)

    Article  ADS  Google Scholar 

  6. T.-C. Lee, J.-T. Yan, Sens. Actuators, B 147, 723 (2010)

    Article  Google Scholar 

  7. S. Demirezen, S. Altindal, Phys. B 405, 1130 (2010)

    Article  ADS  Google Scholar 

  8. B.P. Lakshmi, M.S.P. Reddy, A.A. Kumar, V. Rajagopal Reddy, Curr. Appl. Phys. 12, 765 (2012)

    Article  ADS  Google Scholar 

  9. L.X. Yang, Z. Kai, Z. Chang, Z.X. Feng, E.Y. Fei, L. Ping, H. Yue, Chin. Phys. B 23, 057301 (2014)

    Article  ADS  Google Scholar 

  10. A. Shetty, B. Roul, S. Mukundan, L. Mohan, G. Chandan, K.J. Vinoy, S.B. Krupanidhi, AIP Adv. 5, 097103 (2015)

    Article  ADS  Google Scholar 

  11. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, C.-H. Leem, C.-J. Choi, J. Electron. Mater. 44, 549 (2015)

    Article  ADS  Google Scholar 

  12. S.B. Herner, F.A. Selmi, V.V. Varadan, V.K. Varadan, Mater. Lett. 15, 317 (1993)

    Article  Google Scholar 

  13. M.T. Danielle, A. Safari, C.K. Lisa, J. Am. Ceram. Soc. 79(6), 1593 (1996)

    Article  Google Scholar 

  14. P. Irvin, J. Levy, R. Guo, A.S. Bhalla, Appl. Phys. Lett. 86, 042903 (2005)

    Article  ADS  Google Scholar 

  15. S. Chand, S. Bala, Phys. B 390, 179 (2007)

    Article  ADS  Google Scholar 

  16. M.K. Hudait, S.B. Krupanidhi, Mater. Sci. Eng., B 87, 141 (2001)

    Article  Google Scholar 

  17. X.J. Wang, L. He, J. Electron. Mater. 27, 1272 (1998)

    Article  ADS  Google Scholar 

  18. S. Shankar Naik, V. Rajagopal Reddy, Superlattices Microstruct. 48, 330 (2010)

    Article  ADS  Google Scholar 

  19. A. Tataroglu, S. Altindal, M.M. Bulbul, Microelectron. Eng. 81, 140 (2005)

    Article  Google Scholar 

  20. E.H. Rhoderick, T.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988)

    Google Scholar 

  21. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  22. G. Nagaraju, L. Dasaradha Rao, V. Rajagopal Reddy, Appl. Phys. A 121, 131 (2015)

    Article  ADS  Google Scholar 

  23. V. Rajagopal Reddy, Thin Solid Films 556, 300 (2014)

    Article  ADS  Google Scholar 

  24. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron. 29, 633 (1986)

    Article  ADS  Google Scholar 

  25. H.C. Card, E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971)

    Article  ADS  Google Scholar 

  26. B. PrasannaLakshmi, V. Rajagopal Reddy, V. Janardhanam, M.S. Pratap Reddy, J.-H. Lee, Appl. Phys. A 113, 713 (2013)

    Article  ADS  Google Scholar 

  27. N. Ucar, A.F. Ozdemir, D.A. Aldemir, S. Cakmak, A. Calik, H. Yildiz, F. Cimilli, Superlattices Microstruct. 47, 586 (2010)

    Article  ADS  Google Scholar 

  28. B. Akkal, Z. Benemara, A. Boudissa, N.B. Bouiadjea, M. Amrani, L. Bideux, Mater. Sci. Eng., B 55, 162 (1998)

    Article  Google Scholar 

  29. A. Ashok Kumar, V. Rajagopal Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, C.J. Choi, J. Alloys Compd. 549, 18 (2013)

    Article  Google Scholar 

  30. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, C.-J. Choi, J. Electron. Mater. 43(9), 3499 (2014)

    Article  ADS  Google Scholar 

  31. J. Lin, S. Banerjee, J. Lee, C. Teng, IEEE Electron Device Lett. 11, 191 (1990)

    Article  ADS  Google Scholar 

  32. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal Reddy, V. Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal–insulator–semiconductor (MIS) diode at high temperature range. Appl. Phys. A 122, 519 (2016). https://doi.org/10.1007/s00339-016-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0047-2

Keywords

Navigation