Skip to main content

Advertisement

Log in

An optimization method for defects reduction in fiber laser keyhole welding

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 02 February 2016

Abstract

Laser welding has been widely used in automotive, power, chemical, nuclear and aerospace industries. The quality of welded joints is closely related to the existing defects which are primarily determined by the welding process parameters. This paper proposes a defects optimization method that takes the formation mechanism of welding defects and weld geometric features into consideration. The analysis of welding defects formation mechanism aims to investigate the relationship between welding defects and process parameters, and weld features are considered to identify the optimal process parameters for the desired welded joints with minimum defects. The improved back-propagation neural network possessing good modeling for nonlinear problems is adopted to establish the mathematical model and the obtained model is solved by genetic algorithm. The proposed method is validated by macroweld profile, microstructure and microhardness in the confirmation tests. The results show that the proposed method is effective at reducing welding defects and obtaining high-quality joints for fiber laser keyhole welding in practical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DOE:

Design of experiments

FZ:

Fusion zone

LP:

Laser power

WS:

Welding speed

FP:

Focal position

SG:

Shield gas

ANN:

Artificial neural network

GA:

Genetic algorithm

BPNN:

Back-propagation neural network

FD:

Front defects

HF:

Front height

BD:

Back defects

HB:

Back height

WF:

Front width

WB:

Back width

BH:

Bead height

BM:

Base material

F:

Focal length

BPP:

Beam parameter product

T:

Thickness

HAZ:

Heat affected zone

FAG:

Fine equiaxed grains

References

  1. I. Eriksson, J. Powell, A.F.H. Kaplan, Surface tension generated defects in full penetration laser keyhole welding. J. Laser Appl. 26(1), 012006 (2014)

    Article  ADS  Google Scholar 

  2. J. Rońda, A. Siwek, Modelling of laser welding process in the phase of keyhole formation. Arch. Civ. Mech. Eng. 11(3), 739–752 (2011)

    Article  Google Scholar 

  3. X. Li, F. Lu, H. Cui et al., Numerical modeling on the formation process of keyhole-induced porosity for laser welding steel with T-joint. Int. J. Adv. Manuf. Technol. 72(1), 241–254 (2014)

    Article  Google Scholar 

  4. P. Norman, H. Engström, A.F.H. Kaplan, Theoretical analysis of photodiode monitoring of laser welding defects by imaging combined with modeling. J. Phys. D Appl. Phys. 41(19), 195502 (2008)

    Article  ADS  Google Scholar 

  5. K. Kamimuki, T. Inoue, K. Yasuda et al., Prevention of welding defect by side gas flow and its monitoring method in continuous wave Nd: YAG laser welding. J. Laser Appl. 14(3), 136–145 (2002)

    Article  Google Scholar 

  6. S. Katayama, M. Mizutani, A. Matsunawa, Development of porosity prevention procedures during laser welding [C] LAMP. Int. Congr. Laser Adv. Mater. Process. 2003, 281–288 (2002)

    Google Scholar 

  7. S. Katayama, Y. Kawahito, M. Mizutani, Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys. Proced. 5, 9–17 (2010)

    Article  ADS  Google Scholar 

  8. M. Luo, Y.C. Shin, Estimation of keyhole geometry and prediction of welding defects during laser welding based on a vision system and a radial basis function neural network. Int. J. Adv. Manuf. Technol. 81(1), 1–14 (2015)

    Google Scholar 

  9. K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmi, Optimizing the laser-welded butt joints of medium carbon steel using RSM. J. Mater. Process. Technol. 164, 986–989 (2005)

    Article  Google Scholar 

  10. Y. Dongxia, L. Xiaoyan, H. Dingyong et al., Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach. Opt. Laser Technol. 44(7), 2020–2025 (2012)

    Article  ADS  Google Scholar 

  11. P. Sathiya, K. Panneerselvam, M.Y.A. Jaleel, Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Mater. Des. 36, 490–498 (2012)

    Article  Google Scholar 

  12. P. Leo, G. Renna, G. Casalino et al., Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Opt. Laser Technol. 73, 118–126 (2015)

    Article  ADS  Google Scholar 

  13. Y.W. Park, S. Rhee, Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int. J. Adv. Manuf. Technol. 37(9), 1014–1021 (2008)

    Article  Google Scholar 

  14. D. Westerbaan, D. Parkes, S.S. Nayak et al., Effects of concavity on tensile and fatigue properties in fibre laser welding of automotive steels. Sci. Technol. Weld. Join. 19(1), 60–68 (2014)

    Article  Google Scholar 

  15. F. Caiazzo, V. Alfieri, V. Sergi et al., Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications. Int. J. Adv. Manuf. Technol. 68(5), 1809–1820 (2013)

    Article  Google Scholar 

  16. A. Bahrami, D.T. Valentine, B.T. Helenbrook et al., Study of mass transport in autogenous GTA welding of dissimilar metals. Int. J. Heat Mass Transf. 85, 41–53 (2015)

    Article  Google Scholar 

  17. T. Mohandas, R.G. Madhusudhana, Effect of frequency of pulsing in gas tungsten arc welding on the microstructure and mechanical properties of titanium alloy welds. J. Mater. Sci. Lett. 15, 626–628 (1996)

    Article  Google Scholar 

  18. V. Balasubramanian, V. Ravisankar, R.G. Madhusudhan, Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy. Mater. Sci. Eng. A 459, 19–34 (2007)

    Article  Google Scholar 

  19. K. Abdullah, P.M. Wild, J.J. Jeswiet et al., Tensile testing for weld deformation properties in similar gage tailor welded blanks using the rule of mixtures. J. Mater. Process. Technol. 112(1), 91–97 (2001)

  20. C.A. Walsh, Laser welding–literature review. Mater. Sci. Metall. Dep. Univ. Camb. Engl. 2002, 21 (2014)

    Google Scholar 

  21. Y. Kawahito, M. Mizutani, S. Katayama, Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry. J. Phys. D Appl. Phys. 40(19), 5854–5859 (2007)

    Article  ADS  Google Scholar 

  22. Y. Ai, X. Shao, P. Jiang et al., Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Appl. Phys. A 121(2), 555–569 (2015)

    Article  ADS  Google Scholar 

  23. H. Dai, C. MacBeth, Effects of learning parameters on learning procedure and performance of a BPNN. Neural Netw. 10(8), 1505–1521 (1997)

    Article  Google Scholar 

  24. Y.S. Park, R. Céréghino, A. Compin et al., Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Model. 160(3), 265–280 (2003)

    Article  Google Scholar 

  25. C.H. Li, S.C. Park, Combination of modified BPNN algorithms and an efficient feature selection method for text categorization. Inf. Process. Manag. 45(3), 329–340 (2009)

    Article  Google Scholar 

  26. W.C. Chen, Y.Y. Hsu, L.F. Hsieh et al., A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN. Expert Syst. Appl. 37(1), 716–726 (2010)

    Article  Google Scholar 

  27. V. Vijayaraghavan, A. Garg, C.H. Wong et al., Estimation of mechanical properties of nanomaterials using artificial intelligence methods. Appl. Phys. A 116(3), 1099–1107 (2014)

    Article  ADS  Google Scholar 

  28. S. Karsoliya, Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 3(6), 713–717 (2012)

    Google Scholar 

  29. J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (MIT press, 1992)

  30. L. Gao, F. Lemarchand, M. Lequime, Reverse engineering from spectrophotometric measurements: performances and efficiency of different optimization algorithms. Appl. Phys. A 108(4), 877–889 (2012)

    Article  ADS  Google Scholar 

  31. S. Akpınar, G.M. Bayhan, A. Baykasoglu, Hybridizing ant colony optimization via genetic algorithm for mixed-model assembly line balancing problem with sequence dependent setup times between tasks. Appl. Soft Comput. 13(1), 574–589 (2013)

    Article  Google Scholar 

  32. O. Ozgun, M. Kuzuoglu, Approximation of transformation media-based reshaping action by genetic optimization. Appl. Phys. A 117(2), 597–604 (2014)

    Article  Google Scholar 

  33. M. Galvan-Sosa, J. Portilla, J. Hernandez-Rueda et al., Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm. Appl. Phys. A 114(2), 477–484 (2014)

    Article  ADS  Google Scholar 

  34. Y. Rong, Z. Zhang, G. Zhang et al., Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Opt. Lasers Eng. 67, 94–104 (2015)

    Article  Google Scholar 

  35. D. Katherasan, J.V. Elias, P. Sathiya et al., Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J. Intell. Manuf. 25(1), 67–76 (2014)

    Article  Google Scholar 

  36. D. Parkes, W. Xu, D. Westerbaan et al., Microstructure and fatigue properties of fiber laser welded dissimilar joints between high strength low alloy and dual-phase steels. Mater. Des. 51, 665–675 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51323009, the National Basic Research Program (973 Program) of China under Grant No. 2014CB046703, the National Natural Science Foundation of China (NSFC) under Grant No. 51505163 and 51421062, and the Fundamental Research Funds for the Central Universities, HUST: Grant No. 2014TS040. The authors also would like to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Y., Jiang, P., Shao, X. et al. An optimization method for defects reduction in fiber laser keyhole welding. Appl. Phys. A 122, 31 (2016). https://doi.org/10.1007/s00339-015-9555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9555-8

Keywords

Navigation