Skip to main content
Log in

A magnetic–piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a magnetic–piezoelectric smart material-structure using a novel magnetic-force-interaction approach to optimize the sensitivity of conventional piezoelectric current sensing technologies. The smart material-structure comprises a CuBe-alloy cantilever beam, a piezoelectric PZT sheet clamped to the fixed end of the beam, and an NdFeB permanent magnet mounted on the free end of the beam. When the smart material-structure is placed close to an AC conductor, the magnet on the beam of the smart structure experiences an alternating magnetic attractive and repulsive force produced by the conductor. Thus, the beam vibrates and subsequently generates a strain in the PZT sheet. The strain produces a voltage output because of the piezoelectric effect. The magnetic force interaction is specifically enhanced through the optimization approach (i.e., achieved by using SQUID and machining method to reorient the magnetization to different directions to maximize the magnetic force interaction). After optimizing, the beam’s vibration amplitude is significantly enlarged and, consequently, the voltage output is substantially increased. The experimental results indicated that the smart material-structure optimized by the proposed approach produced a voltage output of 4.01 Vrms with a sensitivity of 501 m Vrms/A when it was placed close to a conductor with a current of 8 A at 60 Hz. The optimized voltage output and sensitivity of the proposed smart structure were approximately 316 % higher than those (1.27 Vrms with 159 m Vrms/A) of representative piezoelectric-based current sensing technologies presented in other studies. These improvements can significantly enable the development of more self-powered wireless current sensing applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Farhangi, The path of smart grid. IEEE Power Energy Mag. 8, 18–28 (2010)

    Article  Google Scholar 

  2. P. Ripka, Magnetic sensors and magnetometers. Meas. Sci. Technol. 13, 645 (2002)

    ADS  Google Scholar 

  3. Y.M. Jia, D. Zhou, L.H. Luo, X.Y. Zhao, H.S. Luo, S.W. Or, H.L.W. Chan, Magnetoelectric effect from the direct coupling of the Lorentz force from a brass ring with transverse piezoelectricity in a lead zirconate titanate (PZT) disk. Appl. Phys. A Mater. Sci. 89, 1025–1027 (2007)

    Article  ADS  Google Scholar 

  4. C. Lu, P. Li, Y. Wen, A. Yang, W. He, J. Zhang, J. Yang, J. Wen, Y. Zhu, M. Yu, Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect. Appl. Phys. A Mater. Sci. 113, 413–421 (2013)

    Article  ADS  Google Scholar 

  5. B. Guiffard, R. Seveno, Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination. Appl. Phys. A Mater. Sci. 118, 225–230 (2015)

    Article  ADS  Google Scholar 

  6. M.H. Korayem, S. Razazzadeh, A.H. Korayem, R. Ghaderi, Effect of geometrical and environmental parameters on vibration of multi-layered piezoelectric microcantilever in amplitude mode. Appl. Phys. A Mater. Sci. 121, 203–215 (2015)

    Article  ADS  Google Scholar 

  7. D.A. Pan, S.G. Zhang, J.J. Tian, J.S. Sun, A.A. Volinsky, L.J. Qiao, Resonant modes and magnetoelectric performance of PZT/Ni cylindrical layered composites. Appl. Phys. A Mater. Sci. 98, 449–454 (2010)

    Article  ADS  Google Scholar 

  8. L. Li, X.M. Chen, Terfenol-D/Pb(Zr, Ti)O3 disk-ring multiferroic heterostructures coupled through normal stresses. Appl. Phys. A Mater. Sci. 98, 761–764 (2010)

    Article  ADS  Google Scholar 

  9. J.P. Zhou, X.Z. Chen, L. Lv, C. Liu, Magnetoelectric coupling in antiferroelectric and magnetic laminate composites. Appl. Phys. A Mater. Sci. 104, 461–464 (2011)

    Article  ADS  Google Scholar 

  10. L. Lin, L. Li, Z.B. Yan, Y.M. Tao, S. Dong, J.M. Liu, Ferroelectricity of polycrystalline GdMnO3 and multifold magnetoelectric responses. Appl. Phys. A Mater. Sci. 112, 947–954 (2013)

    Article  ADS  Google Scholar 

  11. D.A. Filippov, T.A. Galichyan, V.M. Laletin, Magnetoelectric effect in bilayer magnetostrictive-piezoelectric structure. Theory and experiment. Appl. Phys. A Mater. Sci. 115, 1087–1094 (2014)

    Article  ADS  Google Scholar 

  12. D. Hung, C. Lu, H. Bing, Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy. Appl. Phys. A Mater. Sci. 120, 115–120 (2015)

    Article  ADS  Google Scholar 

  13. T.K. Chung, D.G. Lee, M. Ujihara, G.P. Carman, Design, simulation, and fabrication of a novel vibration-based magnetic energy harvesting device. in Proceedings of 14th International Conference on Solid State Sensors, Actuators and Microsystems, Lyon, FR, June 2007, pp. 867

  14. T.K. Chung, C.M. Wang, P.C. Yeh, T.W. Liu, C.Y. Tseng, C.C. Chen, A three-axial frequency-tunable piezoelectric energy harvester using a magnetic-force configuration. IEEE Sens. J. 14, 3152–3163 (2014)

    Article  Google Scholar 

  15. C.C. Chen, T.K. Chung, C.Y. Tseng, C.F. Hung, P.C. Yeh, C.C. Cheng, A miniature magnetic-piezoelectric thermal energy harvester. IEEE Trans. Magn. 51, 9100309 (2015)

    Google Scholar 

  16. I. Enchlescu, M.E. Toimil-molares, C. Zet, M. Daub, L. Westerberg, R. Neumann, R. Spohr, Current perpendicular to plane single-nanowire GMR sensor. Appl. Phys. A Mater. Sci. 86, 43–48 (2007)

    Article  ADS  Google Scholar 

  17. X. Sun, J. Du, Z. Zhu, J. Wang, Q. Liu, Enhanced GMI effect in NiZn-ferrite-modified Fe-based amorphous ribbons. Appl. Phys. A Mater. Sci. 119, 1277–1281 (2015)

    Article  ADS  Google Scholar 

  18. E.S. Leland, P.K. Wright, R.M. White, A MEMS AC current sensor for residential and commercial electricity end-use monitoring. J. Micromech. Microeng. 19, 094018 (2009)

    Article  ADS  Google Scholar 

  19. Q.R. Xu, I. Paprotny, M. Seidel, R.M. White, P.K. Wright, Stick-on piezoelectromagnetic AC current monitoring of circuit breaker panels. IEEE Sens. J. 13, 1055–1064 (2013)

    Article  Google Scholar 

  20. I. Paprotny, Q. Xu, W.W. Chan, R.M. White, P.K. Wright, Electromechanical energy scavenging from current-carrying conductors. IEEE Sens. J. 13, 190–201 (2013)

    Article  Google Scholar 

  21. D.F. Wang, K. Isagawa, T. Kobayashi, T. Itoh, R. Maeda, Passive piezoelectric DC sensor applicable to one-wire or two-wire DC electric appliances for end-use monitoring of DC power supply. Microsyst. Technol. 18, 1897–1902 (2012)

    Article  Google Scholar 

  22. D.F. Wang, K. Isagawa, T. Kobayashi, T. Itoh, R. Maeda, Developing passive piezoelectric MEMS sensor applicable to two-wire DC appliances with current switching. Micro Nano Lett. 7, 68–71 (2012)

    Article  Google Scholar 

  23. D.F. Wang, Y. Suzuki, Y. Suwa, T. Kobayashi, T. Itoh, R. Maeda, Integrated piezoelectric direct current sensor with actuating and sensing elements applicable to two-wire DC appliances. Meas. Sci. Technol. 24, 125109 (2013)

    Article  ADS  Google Scholar 

  24. W. He, P. Li, Y. Wen, J. Zhang, A. Yang, C. Lu, A high-sensitivity current sensor based on piezoelectric ceramic Pb(Zr, Ti)O3 and ferromagnetic materials. Rev. Sci. Instrum. 85, 026110 (2014)

    Article  ADS  Google Scholar 

  25. F. Koga, T. Tadatsu, J. Inoue, I. Sasada, A new type of current based on inverse magnetostriction for large current detection. IEEE Trans. Magn. 45, 4506–4509 (2009)

    Article  ADS  Google Scholar 

  26. T. Ueno, T. Higuchi, High sensitive and heat-resistant magnetic sensor using magnetostrictive/piezoelectric laminate composite. IEEE Trans. Magn. 41, 3670–3672 (2005)

    Article  ADS  Google Scholar 

  27. P. Ripka, Current sensors using magnetic materials. J. Optoelectron. Adv. Mater. 6, 587–592 (2004)

    Google Scholar 

  28. T.K. Chung, P.C. Yeh, C.M. Wang, A magnetic/mechanical approach for optimizing a miniature self-powered current sensor. in Proceedings of ASME Conference on SMASIS, Snowbird, USA, 2013, pp. V001T04A010

  29. S.B. Lao, S.S. Chauhan, T.E. Pollock, T. Schröder, I.S. Cho, A. Salehian, Design, fabrication and temperature sensitivity testing of a miniature piezoelectric-based sensor for current measurements. Actuators 3, 162–181 (2014)

    Article  Google Scholar 

  30. J.W. Yi, W.Y. Shih, W.-H. Shih, Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91, 1680 (2002)

    Article  ADS  Google Scholar 

  31. Quantum Design, Inc. MPMS-XL. http://www.qdusa.com/sitedocs/productBrochures/1014-003.pdf

  32. Taiwan Leader Magnet Co. Ltd. http://www.all-magnet.com/db/upload/webdata3/1405TMPRForSintered%20Ndfeb.pdf

Download references

Acknowledgments

Support for this work was obtained from the Taiwan Ministry of Science and Technology (Grant Nos. 103-2221-E-009-025 and 104-2221-E-009-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Kan Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, PC., Chung, TK., Lai, CH. et al. A magnetic–piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing. Appl. Phys. A 122, 29 (2016). https://doi.org/10.1007/s00339-015-9552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9552-y

Keywords

Navigation