Skip to main content
Log in

A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a smart material-structure can sense not only three-axis AC magnetic-fields but also three-axis DC magnetic-fields. Under x-axis and z-axis AC magnetic field ranging from 0.2 to 3.2 gauss, sensing sensitivity of the smart material-structure stimulated at resonant frequency is approximate 8.79 and 2.80 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 2 to 12 gauss, the sensitivity of the smart material-structure is 1.24–1.54 and 1.25–1.41 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 12 to 20 gauss, the sensitivity of the smart material-structure is 5.17–6.2 and 3.97–4.57 mV/gauss, respectively. These experimental results show that the smart material-structure successfully achieves three-axis DC and AC magnetic sensing as we designed. Furthermore, we also compare the results of the AC and DC magnetic-field sensing to investigate discrepancies. Finally, when applying composite magnetic-fields to the smart material-structure, the smart material-structure shows decent outputs as expected (consistent to the sensing principle). In the future, we believe the smart material-structure capable of sensing AC and DC magnetic fields will have more applications than conventional structures capable of sensing only DC or AC magnetic field. Thus, the smart material-structure will be an important design reference for future magnetic-field sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.L. Herrera-May, L.A. Aguilera-Cortes, P.J. Garcia-Ramirez, E. Manjarrez, Resonant magnetic field sensors based on MEMS technology. Sensors 9, 7785–7813 (2009)

    Article  Google Scholar 

  2. P. Ripka, Magnetic sensors and magnetometers. Meas. Sci. Technol. 13, 645 (2002)

    ADS  Google Scholar 

  3. X.J. Li, C. Feng, X. Chen, Y. Liu, Y.W. Liu, M.H. Li, G.H. Yu, Effects of interfacial roughness on the planar Hall effect in NiFe/Cu/IrMn multilayers. Appl. Phys. A Mater. Sci. 118, 505–509 (2015)

    Article  ADS  Google Scholar 

  4. M. Hulth, F. Kolb, H. Plank, Dielectric sensing by charging energy modulation in a nano-granular metal. Appl. Phys. A Mater. Sci. 117, 1689–1696 (2014)

    Article  ADS  Google Scholar 

  5. Y.J. Chen, P.C. Chen, T.K. Chung, “A novel AMR magnetic sensor utilizing nanoscale magnetic-domain transformation. 2015 IEEE magnetics conference (intermag), Beijing, China, 11–15 May 2015

  6. C.F. Hung, P.C. Yeh, T.K. Chung, A miniature magnetic-force-based three-axis AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. Sensors 17, 308 (2017)

    Article  Google Scholar 

  7. T.K. Chung, C.M. Wang, P.C. Yeh, T.W. Liu, C.Y. Tseng, C.C. Chen, A three-axial frequency-tunable piezoelectric energy harvester using a magnetic-force configuration. IEEE Sens. J. 14, 3152–3163 (2014)

    Article  ADS  Google Scholar 

  8. C.C. Chen, T.K. Chung, C.Y. Tseng, C.F. Hung, P.C. Yeh, C.C. Cheng, A miniature magnetic-piezoelectric thermal energy harvester. IEEE Trans. Magn. 51, 9100309 (2015)

    Google Scholar 

  9. C. Lu, P. Li, Y. Wen, A. Yang, W. He, J. Zhang, J. Yang, J. Wen, Y. Zhu, M. Yu, Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect. Appl. Phys. A Mater. Sci. 113, 413–421 (2013)

    Article  ADS  Google Scholar 

  10. D.A. Pan, S.G. Zhang, J.J. Tian, J.S. Sun, A.A. Volinsky, L.J. Qiao, Resonant modes and magnetoelectric performance of PZT/Ni cylindrical layered composites. Appl. Phys. A Mater. Sci. 98, 449–454 (2010)

    Article  ADS  Google Scholar 

  11. B. Guiffard, R. Seveno, Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination. Appl. Phys. A Mater. Sci. 118, 225–230 (2015)

    Article  ADS  Google Scholar 

  12. D.A. Filippov, T.A. Galichyan, V.M. Laletin, Magnetoelectric effect in bilayer magnetostrictive-piezoelectric structure. Theory and experiment. Appl. Phys. A Mater. Sci. 115, 1087–1094 (2014)

    Article  ADS  Google Scholar 

  13. P.C. Yeh, T.K. Chung, C.H. Lai, C.M. Wang, A magnetic–piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing. Appl. Phys. A Mater. Sci. 122, 29 (2016)

    Article  ADS  Google Scholar 

  14. P.C. Yeh, D. Hao, T.K. Chung, “A Novel Self-Powered Piezoelectric Three-Axis MEMS Magnetic Sensor. The 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2017), Kaohsiung, Taiwan, 18–22 June, 2017

  15. D.Y. Huang, C.J. Lu, H. Bing, Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy. Appl. Phys. A Mater. Sci. 120, 115–120 (2015)

    Article  ADS  Google Scholar 

  16. L. Li, X.M. Chen, Terfenol-D/Pb(Zr,Ti)O3 disk-ring multiferroic heterostructures coupled through normal stresses. Appl. Phys. A Mater. Sci 98, 761–764 (2010)

    Article  ADS  Google Scholar 

  17. M.H. Korayem, S. Razazzadeh, A.H. Korayem, R. Ghaderi., Effect of geometrical and environmental parameters on vibration of multi-layered piezoelectric microcantilever in amplitude mode. Appl. Phys. A Mater. Sci. 121, 203–215 (2015)

    Article  ADS  Google Scholar 

  18. M. Ghanbari, S. Hossainpour, G. Rezazadeh, On the modeling of a piezoellectrically actuated micro-sensor for measurement of microscale fluid physical properties. Appl. Phys. A Mater. Sci. 121, 651–663 (2015)

    Article  ADS  Google Scholar 

  19. C.F. Hung, T.K. Chung, P.C. Yeh, C.C. Chen, C.M. Wang, S.H. Lin, A miniature mechanical-piezoelectric-configured three-axis vibrational energy harvester. IEEE Sens. J. 15, 5601–5615 (2015)

    Article  ADS  Google Scholar 

  20. R.M. Boysel, T.E. Fiscus, L.J. Ross, Development of a single chip 6 DOF MEMS IMU for robotic and UV navigation. 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, Oregon Convention Center, Portland, Oregon, 20–23, September, 2011

  21. T.K. Das, P. Banerji, S.K. Mandai, Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co66Fe2Cr4Si13B15 amorphous wire for highly sensitive sensors applications. Appl. Phys. A Mater. Sci. 122, 939 (2016)

    Article  ADS  Google Scholar 

  22. X.H. Wang, Q. Huang, Y.L. Lu, M. Du, “Development and Application of a Portable 3-axis Transient Magnetic Field Measuring System Based on AMR Sensor. 2013 IEEE international conference on smart instrumentation, measurement and applications (ICSIMA2013), Kuala Lumpur, Malaysia, 25–57 November 2013

  23. D. Burdin, D. Chashin, N. Ekonomov, L. Fetisov, Y. Fetisov, M. Shamonin, DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures”. J. Phys. D Appl. Phys. 49, 375002 (2016)

    Article  Google Scholar 

  24. D.C. Wang, P. Li, Y.M. Wen, Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems. Rev. Sci. Instrum. 87, 105001 (2016)

    Article  ADS  Google Scholar 

  25. J. Chen, Q.A. Huang, M. Qin, Detecting the magnetic field direction by a cantilever operating in different vibration modes. 8th IEEE conference on sensors, Christchurch, 25–28 October 2009

  26. Y. Shindo, F. Narita, Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int. J. Mech. Mater. Design 10, 305–311 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support provided by the Taiwan Ministry of Science and Technology (Grant no. 105-2628-E-009-001-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Kan Chung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, CF., Chen, CC., Yeh, PC. et al. A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields. Appl. Phys. A 123, 739 (2017). https://doi.org/10.1007/s00339-017-1332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1332-4

Navigation