Skip to main content
Log in

AC and DC conductivity of ionic liquid containing polyvinylidene fluoride thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polarisation processes and charge transport in polyvinylidene fluoride (PVDF) with a small amount (0.01–10 wt%) of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate (\(\hbox {[EMIM]}^+[\hbox {NO}_3]^-\)) are investigated by means of dielectric spectroscopy. The response of PVDF that contains more than 0.01 wt% IL is dominated by a low-frequency relaxation which shows typical signatures of electrode polarisation. Furthermore, the \(\alpha _{{\rm a}}\) relaxation, related to the glass transition, disappears for IL contents of more than 1 wt%, which indicates that the amorphous phase loses its glass-forming properties and undergoes structural changes. The DC conductivity is determined from the low-frequency limit of the AC conductivity and from the dielectric loss peak related to the electrode polarisation. DC conductivities of \(10^{-10}\) to \(10^{-2}\,\hbox {S}/\hbox {m}\) are obtained—increasing with IL content and temperature. The dependence of the DC conductivity on the IL content follows a power law with an exponent greater than one, indicating an increase in the ion mobility. The temperature dependence of the DC conductivity shows Vogel–Fulcher–Tammann behaviour, which implies that charge transport is coupled to polymer chain motion. Mobile ion densities and ion mobilities are calculated from the DC conductivity and the dielectric loss related to electrode polarisation, with the results that less than one per cent of the total ion concentration contributes to the conductivity and that the strong increase in conductivity with temperature is mainly caused by a strong increase in ion mobility. This leads to the conclusion that in particular the ion mobility must be reduced in order to decrease the DC conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.J. Lovinger, in Developments of Crystalline Polymers, vol. 1, ed. by D.C. Basset (Springer, Berlin, 1982), pp. 195–273

    Chapter  Google Scholar 

  2. A.J. Lovinger, Science 220(4602), 1115–1121 (1983)

    Article  ADS  Google Scholar 

  3. R.G. Kepler, R.A. Anderson, Adv. Phys. 41, 1–57 (1992)

    Article  ADS  Google Scholar 

  4. T. Furukawa, Phase Transit. 18, 143–211 (1989)

    Article  Google Scholar 

  5. T. Furukawa, Key Eng. Mater. 92–93, 15–30 (1994)

    Article  Google Scholar 

  6. T. Furukawa, Adv. Colloid Interface 71–72, 183–208 (1997)

    Article  Google Scholar 

  7. K. Tashiro, in Ferroelectric Polymers, ed. by H.S. Nalwa (Marcel Dekker Inc, New York, 1995), pp. 63–181

    Google Scholar 

  8. V.V. Kochervinskii, Russ. Chem. Rev. 65(10), 865–913 (1996)

    Article  ADS  Google Scholar 

  9. X. He, K. Yao, Appl. Phys. Lett. 89, 112909 (2006)

    Article  ADS  Google Scholar 

  10. F. Wang, A. Lack, Z. Xie, P. Frübing, W. Wirges, R. Gerhard, in 2011 Annual Report, Conference on Electrical Insulation and Dielectric Phenomena (National Academy of Sciences, Washington, DC, 2011), pp. 710–713

  11. F. Wang, A. Lack, Z. Xie, P. Frübing, A. Taubert, R. Gerhard, Appl. Phys. Lett. 100, 062903 (2012)

    Article  ADS  Google Scholar 

  12. C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, Y. Li, Polym. Chem. 4, 5726–5734 (2013)

    Article  Google Scholar 

  13. C. Liang, Z. Mai, Q. Xie, R. Bao, W. Yang, B. Xie, M. Yang, J. Phys. Chem. B 118, 9104–9111 (2014)

    Article  Google Scholar 

  14. P. Frübing, F. Wang, M. Wegener, Appl. Phys. A 107, 603–611 (2012)

    Article  ADS  Google Scholar 

  15. M. Lada, Appl. Phys. Lett. 93, 143308 (2008)

    Article  ADS  Google Scholar 

  16. R. Kalbitz, P. Frübing, R. Gerhard, D.M. Taylor, in Proceedings of the 10th IEEE International Conference on Solid Diel. (ICSD) 2010, IEEE Cat. No. CFP10ICS-PRT, (2010). doi:10.1109/ICSD2010.5567939:410

  17. J.R. Macdonal. Phys. Rev. 91, 412 (1953)

    Article  ADS  Google Scholar 

  18. A. Serghei, Phys. Rev. B 80, 184301 (2009)

    Article  ADS  Google Scholar 

  19. S. Emmert, M. Wolf, R. Gulich, S. Krohns, S. Kastner, P. Lunkenheimer, A. Loidl, Eur. Phys. J. B 83, 157–165 (2011)

    Article  ADS  Google Scholar 

  20. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983), p. 76

    Google Scholar 

  21. D. Rollik, S. Bauer, R. Gerhard-Multhaupt, J. Appl. Phys. 85, 3282–3288 (1999)

    Article  ADS  Google Scholar 

  22. J.C. Dyre, J. Appl. Phys. 64, 2456–2468 (1988)

    Article  ADS  Google Scholar 

  23. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72(3), 873–892 (2000)

    Article  ADS  Google Scholar 

  24. According to DIN 53482, Solef™ PVDF Design & Processing Guide, (2015), p. 43. http://www.solvay.com

  25. R.J. Klein, S. Zhang, S. Dou, B.H. Jones, R.H. Colby, J. Runt, J. Chem. Phys. 124, 144903–8 (2006)

    Article  ADS  Google Scholar 

  26. J.R. Macdonald, Phys. Rev. 91, 412 (1953)

    Article  ADS  Google Scholar 

  27. R. Coelho, Rev. Phys. Appl. 18, 137–146 (1983)

    Article  Google Scholar 

  28. R. Coelho, J. Non-Cryst. Solids 131–133, 1136–1139 (1991)

    Article  Google Scholar 

  29. U.H. Choi, M. Lee, S. Wang, W. Liu, K.I. Winey, H.W. Gibson, R.H. Colby, Macromolecules 45, 3974–3985 (2012)

    Article  ADS  Google Scholar 

  30. J.R. Sangoro, A. Serghei, S. Naumov, P. Galvosas, J. Kärger, C. Wespe, F. Bordusa, F. Kremer, Phys. Rev. E 77, 051202–4 (2008)

    Article  ADS  Google Scholar 

  31. J. Sangoro, C. Iacob, A. Serghei, S. Naumov, P. Galvosas, J. Kärger, C. Wespe, F. Bordusa, A. Stoppa, J. Hunger, R. Buchner, F. Kremer, J. Chem. Phys. 128, 214509–5 (2008)

    Article  ADS  Google Scholar 

  32. J. Sangoro, C. Iacob, A. Serghei, C. Friedrich, F. Kremer, Phys. Chem. Chem. Phys. 11, 913–916 (2009)

    Article  Google Scholar 

  33. J.R. Sangoro, F. Kremer, Acc. Chem. Res. 45, 525–532 (2012)

    Article  Google Scholar 

  34. J.L. Barton, Verr. Réfract. 20, 328 (1966)

    Google Scholar 

  35. T. Nakajima, in Annual Report CIEDP, (1971), p. 168

  36. H.J. Namikawa, J. Non-Cryst. Solids 14, 88 (1974)

    Google Scholar 

  37. H.J. Namikawa, J. Non-Cryst. Solids 18, 173 (1975)

    Google Scholar 

  38. C. Tsonos, A. Kanapitsas, A. Kechriniotis, N. Petropoulos, J. Non-Cryst. Solids 358(14), 1638–1643 (2012)

    Article  ADS  Google Scholar 

  39. N. Nishimura, H. Ohno, Polymer 55, 3289–3297 (2014)

    Article  Google Scholar 

  40. P. Frübing, M. Wegener, R. Gerhard-Multhaupt, A. Buchsteiner, W. Neumann, L. Brehmer, in Proceedings of the SPIE 4017, (1999), pp. 26–28, ISBN 0-8194-3643-7

  41. M. Wegener, S. Bauer, R. Gerhard-Multhaupt, in Proceedings of the 10th International Symposium on Electrets, (1999), pp. 643–646, IEEE Cat. Nr. 99CH36256, ISBN 0-7803-5025-1

  42. J.F. Scott, J. Phys. Condens. Mater. 20, 021001 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Andreas Taubert, Institute of Chemistry, University of Potsdam for valuable comments and to the European Union for partial financial support within the European Fund for Regional Development (EFRD). F. Wang would like to acknowledge a visiting scholarship provided by the State Key Laboratory of Power Transmission Equipment and System Security and New Technology in Chongqing University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Frübing.

Appendix: Calculation of the total ion density and of the CH2–CF2 dipole concentration

Appendix: Calculation of the total ion density and of the CH2–CF2 dipole concentration

Under the assumption that ions do not penetrate into crystallites, the total ion concentration within the film is given by

$$\begin{aligned} n_\mathrm{tot} &=\frac{\rho _\mathrm{IL}N_A}{m_\mathrm{mol,IL}} \cdot \frac{V_\mathrm{IL}}{V_\mathrm{film}}\cdot \frac{1}{(1-c)}= \frac{\rho _\mathrm{film}N_A}{m_\mathrm{mol,IL}}\cdot \frac{m_\mathrm{IL}}{m_\mathrm{film}}\cdot \frac{1}{(1-c)}\\ &\approx \frac{\rho _\mathrm{PVDF}N_A}{m_\mathrm{mol,IL}}\cdot \frac{m_\mathrm{IL}}{m_\mathrm{PVDF}+m_\mathrm{IL}}\cdot \frac{1}{(1-c)}, \end{aligned}$$

where \(c\equiv m_\mathrm{c}/m_\mathrm{film}\) is the crystallinity (\(m_\mathrm{c}\) mass of crystalline portion, \(m_\mathrm{film}\) mass of the film).

For a film containing 1 wt% IL, \(m_\mathrm{IL}=1.0\) g, \(m_\mathrm{PVDF}=99.0\) g.

The density of the IL is not exactly known and is difficult to determine because [EMIM][\(\hbox {NO}_3\)] is hygroscopic. However, for an estimate, it can be assumed that the density is not far from the densities of other related ILs, which lie between 1100 and 1500 kg/m\(^3\) (IoLiTec GmbH, Germany). The density of the solid PVDF homopolymer is \(\rho _\mathrm{PVDF}=1780\,\hbox {kg}/\hbox {m}^{-3}\). Thus, for low IL contents, \(\rho _\mathrm{film}\approx \rho _\mathrm{PVDF}\) is a reasonable approximation.

The crystallinity of the film increases by addition of the IL to the solution: for the 5 wt% film, \(c=47\) and for the pure PVDF film, \(c=36\) % were obtained, respectively [10].

By use of \(c=0.36,\,c=0.40\) and \(c=0.47\) for the 0.1, 1 and 5 wt% IL films, respectively, total ion concentrations in the amorphous fraction of \(n_\mathrm{tot}=9.65\times 10^{24},\,1.03\times 10^{26}\) and \(5.83\times 10^{26}\,\hbox {m}^{-3}\), respectively, are calculated.

The total \(\hbox {CH}_2\)–CF2 dipole concentration is

$$\begin{aligned} n_{\rm d}=\frac{\rho _\mathrm{PVDF} N_A}{m_\mathrm{mol, unit VDF}}. \end{aligned}$$

With the density \(\rho _\mathrm{PVDF}=1780\,\hbox {kg}/\hbox {m}^{-3}\) and the molar mass \(m_\mathrm{mol, unit VDF}=0.064\) kg/mol, \(n_{\rm d}=1.67\times 10^{28}\,\hbox {m}^{-3}\) is obtained.

\(n_{\rm d}\gg n_\mathrm{ion}\), even for 5 wt% IL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frübing, P., Wang, F., Kühle, TF. et al. AC and DC conductivity of ionic liquid containing polyvinylidene fluoride thin films. Appl. Phys. A 122, 79 (2016). https://doi.org/10.1007/s00339-015-9540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9540-2

Keywords

Navigation