Skip to main content
Log in

Evaluation of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cu/Ta/Si stacks were prepared and, subsequently, annealed at 650 °C with different electric field intensity (0–4.0 kV/cm). The effect of electric field intensity on atomic diffusion was determined from cross-sectional TEM micrographs of Cu/Ta/Si stacks. The atomic diffusion as well as the growth of amorphous layer at Ta/Si interface tended to enhance with the increased electric field intensity at 650 °C. The growth of amorphous layer obeyed a logarithmic law. The reduction in diffusion activation energy Q by increased electric field intensity will accelerate the atom diffusion, leading to significant barrier failure of Cu/Ta/Si stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. X.N. Li, L.J. Liu, X.Y. Zhang, J.P. Chu, Q. Wang, C. Dong, J. Electron. Mater. 41(12), 3447 (2012)

    Article  ADS  Google Scholar 

  2. J.S. Fang, J.H. Lin, B.Y. Chen, G.S. Chen, T.S. Chin, J. Electron. Mater. 41(1), 138 (2012)

    Article  ADS  Google Scholar 

  3. C.X. Yang, S.J. Ding, D.W. Zhang, P.F. Wang, X.P. Qu, R. Liu, Electrochem. Solid State Lett. 14(2), H84 (2011)

    Article  Google Scholar 

  4. L. Wang, J.H. Xu, L.H. Yu, S.T. Dong, The Minerals, Metals & Materials Society (2015) Effect of electric field intensity on atom diffusion in Cu/Ta/Si stacks. In: TMS2015 Supplemental Proceedings, p. 575. Wiley, Hoboken (2015)

  5. C.W. Wang, P. Yiu, J.P. Chu, C.H. Shek, C.H. Hsueh, J. Mater. Sci. 50(5), 2085 (2015)

    Article  ADS  Google Scholar 

  6. S.Y. Chang, L.P. Liang, L.C. Kao, C.F. Lin, J. Electrochem. Soc. 162(3), D96 (2015)

    Article  ADS  Google Scholar 

  7. C.H. Lin, W.K. Leau, C.H. Wu, J. Electron. Mater. 39(11), 2441 (2010)

    Article  ADS  Google Scholar 

  8. T. Cheon, S.H. Choi, S.H. Kim, D.H. Kang, Electrochem. Solid State Lett. 14(5), D57 (2011)

    Article  Google Scholar 

  9. H. Conrad, J. Wang, Scr. Mater. 72–73, 33 (2014)

    Article  Google Scholar 

  10. J. Wang, D. Yang, H. Conrad, Scr. Mater. 69(5), 351 (2013)

    Article  Google Scholar 

  11. J. Obare, J. Wang, H. Conrad, Scr. Mater. 68(2), 111 (2013)

    Article  Google Scholar 

  12. H. Conrad, D. Yang, Mater. Sci. Eng. A 559, 591 (2013)

    Article  Google Scholar 

  13. J. Wang, H. Conrad, Mater. Sci. Technol. 28(9–10), 1198 (2012)

    Article  Google Scholar 

  14. S. Ghosh, A.H. Chokshi, P. Lee, R. Raj, J. Am. Ceram. Soc. 92(8), 1856 (2009)

    Article  Google Scholar 

  15. S. Starnes, H. Conrad, Scr. Mater. 59(10), 1115 (2008)

    Article  Google Scholar 

  16. H. Ohtsuka, Sci. Technol. Adv. Mater. 9(1), 013004 (2008)

    Article  MathSciNet  Google Scholar 

  17. L. Wang, Z.H. Cao, J.H. Xu, L.H. Yu, T. Huang, X.K. Meng, Appl. Phys. A 114(4), 1091 (2013)

    Article  ADS  Google Scholar 

  18. L. Wang, Z.H. Cao, J.A. Syed, K. Hu, Q.W. She, X.K. Meng, Electrochem. Solid State Lett. 15(6), H188 (2012)

    Article  Google Scholar 

  19. L. Wang, Z.H. Cao, K. Hu, Q.W. She, X.K. Meng, Appl. Surf. Sci. 257(24), 10845 (2011)

    ADS  Google Scholar 

  20. Z.H. Cao, F. Wang, L. Wang, X.K. Meng, Phys. Rev. B 81(11), 113405 (2010)

    Article  ADS  Google Scholar 

  21. X.N. Li, L.R. Zhao, Z. Li, L.J. Liu, C.M. Bao, J.P. Chu, C. Dong, J. Mater. Res. 28(24), 3367 (2013)

    Article  Google Scholar 

  22. Y.M. Zhou, M.Z. He, Z. Xie, Appl. Surf. Sci. 315, 353 (2014)

    Article  ADS  Google Scholar 

  23. L.C. Leu, D.P. Norton, L. McElwee-White, T.J. Anderson, Appl. Phys. A Mater. 94(3), 691 (2009)

    Article  ADS  Google Scholar 

  24. B.T. Liu, D.Y. Zhao, J.Z. Xing, L. Yang, X.G. Zhang, J.X. Guo, X.H. Li, L.X. Ma, X.Y. Zhang, Appl. Phys. A Mater. 111(3), 841 (2013)

    Article  ADS  Google Scholar 

  25. L. Wang, Z.H. Cao, K. Hu, Q.W. She, X.K. Meng, Mater. Chem. Phys. 135(2–3), 806 (2012)

    Article  Google Scholar 

  26. J.A. Wilks, N.P. Magtoto, J.A. Kelber, V. Arunachalam, Appl. Surf. Sci. 253(14), 6176 (2007)

    Article  ADS  Google Scholar 

  27. N.F. Mott, Trans. Faraday Soc. 35, 1175 (1939)

    Article  Google Scholar 

  28. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 185 (1995)

    Google Scholar 

  29. M. Haneda, J. Iijima, J. Koike, Appl. Phys. Lett. 90(25), 252107 (2007)

    Article  ADS  Google Scholar 

  30. L. Zuo, Y.D. Zhang, Z.C. Hu, H.I. Faraoun, X. Zhao, C. Esling, Adv. Mater. Res. 29–30, 123 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Department of Jiangsu Province, the National Natural Science Foundation of China. The authors also thank International Conference TMS 2015 meeting and exhibition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Wang or J. H. Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jin, L., Yu, L.H. et al. Evaluation of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing. Appl. Phys. A 122, 3 (2016). https://doi.org/10.1007/s00339-015-9531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9531-3

Keywords

Navigation