Skip to main content
Log in

Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Cu-Ni-Mo alloys were investigated to increase thermal stability against silicide formation. The alloy compositions were chosen such that an insoluble element (Mo) solute was dissolved into Cu via a third element Ni which is soluble in both Cu and Ni. Thin-film Cu-Ni-Mo alloys were prepared by magnetron sputtering. The films with Mo/Ni ratio of 1/12 exhibited low electrical resistivities in combination with high thermal stabilities against silicide formation, in support of a tentative “cluster-plus-glue-atom” model for stable solid solutions. In particular, a (Mo1/13Ni12/13)0.3Cu99.7 sample reached a minimum resistivity of 2.6 μΩ cm after 400°C/1 h annealing and remained highly conductive with resistivities below 3 μΩ cm even after 400°C/40 h annealing. These alloys are promising candidates for future interconnect materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C.S. Liu and L.J. Chen, J. Appl. Phys. 74, 5501 (1993).

    Article  CAS  Google Scholar 

  2. J.B. Zhou, T. Gustafsson, and E. Garfunkel, Surf. Sci. 372, 21 (1997).

    Article  CAS  Google Scholar 

  3. J.P. Chu, C.H. Lin, and V.S. John, Appl. Phys. Lett. 91, 132109 (2007).

    Article  Google Scholar 

  4. J.P. Chu and C.H. Lin, J. Electron. Mater. 35, 1933 (2006).

    Article  CAS  Google Scholar 

  5. J.P. Chu, T.Y. Yu, C.H. Wu, C.H. Lin, S.F. Wang, and Q. Chen, J. Electrochem. Soc. 157, H384 (2010).

    Article  CAS  Google Scholar 

  6. S.M. Rossnagel and H. Kim, J. Vac. Sci. Technol. B 21, 2550 (2003).

    Article  CAS  Google Scholar 

  7. Y. Wang, C. Hung, W. Lee, S. Chang, and Y. Wang, Thin Solid Films 516, 5241 (2008).

    Article  CAS  Google Scholar 

  8. Q. Xie, X. Qu, J. Tan, Y. Jiang, M. Zhou, T. Chen, and G. Ru, Appl. Surf. Sci. 253, 1666 (2006).

    Article  CAS  Google Scholar 

  9. A. Takeuchi and A. Kihisa Inoue, Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  10. A.A. Kodentsov, S.F. Dunaev, and E.M. Slyusarenko, Phase Equilibria in Cu-Ni-(V,Nb,Ta,Mo) Systems at 1275 K. Moscow University Chemistry Bulletin, translated from Vestnik Moskovskogo Universiteta, Khimiya 43, 90 (1988).

  11. J. Zhang, Q. Wang, Y.M. Wang, C.Y. Li, L.S. Wen, and C. Dong, J. Mater. Res. 25, 328 (2010).

    Article  CAS  Google Scholar 

  12. C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, and J.H. Xia, J. Phys. D. Appl. Phys. 40, R273 (2007).

    Article  CAS  Google Scholar 

  13. L.F. Nie, X.N. Li, J.P. Chu, Q. Wang, C.H. Lin, and C. Dong, Appl. Phys. Lett. 96, 182105 (2010).

    Article  Google Scholar 

  14. Y.K. Ko, J.H. Jang, S. Lee, H.J. Yang, W.H. Lee, P.J. Reucroft, and J.G. Lee, J. Mater. Sci. 38, 217 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. N. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.N., Liu, L., Zhang, X. et al. Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation. J. Electron. Mater. 41, 3447–3452 (2012). https://doi.org/10.1007/s11664-012-2260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2260-x

Keywords

Navigation