Skip to main content

Advertisement

Log in

ATR-FTIR microscopy in mapping mode for the study of verdigris and its secondary products

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To study degradation processes occurring on painting materials, the use of high-resolution micro-analytical techniques is highly requested since it provides a detailed identification and localisation of both the original and deteriorated ingredients. Among the various pigments recently studied, the characterisation of verdigris has received a major interest. This pigment has not a unique chemical formula, but its composition depends on the recipe employed for its manufacturing. Moreover, verdigris paints are not stable and are subject to a colour change from blue-green to green, which occurs in the first few months after the application. In this paper, we focused our attention on the use of ATR-FTIR mapping as a useful method to identify verdigris secondary products and pathways. Several mock-ups and real samples have been analysed, and the correlation among the detected compounds and their spatial location, obtained by the application of ATR-FTIR microscopy in mapping mode, allowed formulating some hypotheses on the degradation pattern of verdigris, which may feed the discussion on the transformation and stability of this pigment. From an analytical point of view, we showed how FTIR mapping approaches may be extremely useful both for the identification of compounds in complex matrix in which single spectra may limit the exhaustive characterisations due to bands overlapping and for the study of degradation pathways by taking into consideration the relative distribution of degradation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Pouyet, A. Lluveras-Tenorio, A. Nevin, D. Saviello, F. Sette, M. Cotte, Anal. Chim. Acta 822, 51 (2014)

    Article  Google Scholar 

  2. N. Salvadò, T. Pradell, E. Pantos, M.Z. Papiz, J. Molera, M. Seco, M. Vendrell-Saz, J. Sync. Rad. 9, 215 (2002)

    Article  Google Scholar 

  3. N. Salvadò, S. Butì, M. Cotte, G. Cinque, T. Pradell, Appl. Phys. A 111, 47 (2013)

    Article  ADS  Google Scholar 

  4. N. Salvadò, S. Butì, J. Nicholson, H. Emerich, A. Labrador, T. Pradell, Talanta 79, 419 (2009)

    Article  Google Scholar 

  5. M. Cotte, J. Susini, J. Anal. Atomic Spectrom 23, 820 (2009)

    Article  Google Scholar 

  6. M. Spring, C. Ricci, D. Peggie, S. Kazarian, Anal. Bioanal. Chem. 392, 37 (2008)

    Article  Google Scholar 

  7. E. Joseph, S. Prati, G. Sciutto, M. Ioele, P. Santopadre, R. Mazzeo, Anal. Bioanal. Chem. 396, 899 (2010)

    Article  Google Scholar 

  8. S. Prati, E. Joseph, G. Sciutto, R. Mazzeo, Acc. Chem. Res. 43, 792 (2010)

    Article  Google Scholar 

  9. S. Prati, G. Sciutto, E. Catelli, A. Ashashina, R. Mazzeo, Anal. Bioanal. Chem. 405, 895 (2013)

    Article  Google Scholar 

  10. S. Prati, F. Rosi, G. Sciutto, R. Mazzeo, D. Magrini, S. Sotiropoulou, M. Van Bos, Microchem. J. 103, 79 (2012)

    Article  Google Scholar 

  11. J.A. Reffner, P.A. Martoglio, in Practical guide to infrared microspectroscopy, ed. by H.J. Humecki (Marcel Dekker, New York, 1995), p. 41

    Google Scholar 

  12. L.L. Lewis, A.J. Sommer, Appl. Spectrosc. 54, 324 (2000)

    Article  ADS  Google Scholar 

  13. J.M. de la Roja, V.G. Baonza, M. San Andres, Spectr. Acta A 68, 1120 (2007)

    Article  ADS  Google Scholar 

  14. M. San Andres, J.M. de la Roja, V.G. Baonza, N. Sancho, J. Raman Spect. 41, 1468 (2010)

    Article  ADS  Google Scholar 

  15. T.D. Chaplin, R.J.H. Clark, D.A. Scott, J. Raman Spect. 37, 223 (2006)

    Article  ADS  Google Scholar 

  16. J.M. de la Roja, M. San Andres, N. Sancho Cubino, S. Santoz-Gomez, Col. Res. Appl. 32, 414 (2007)

    Article  Google Scholar 

  17. D.A. Scott, in The Organic Salts of Copper in Copper in Bronze and Art: Corrosion, Colorants, Conservation, ed. by D. Berland (Getty Conservation Institute, Los Angeles, 2002), p. 270

    Google Scholar 

  18. H. Kuhn, in Artists’ Pigments A Handbook of Their History and Characteristics, vol. 2, ed. by A. Roy (National Gallery of Art, Washington, 1993), p. 131

    Google Scholar 

  19. D.V. Thompson Jr, The Craftsman’s Handbook of Cennino d’Andrea Cennini (Dover, New York, 1954)

    Google Scholar 

  20. L. Cartechini, C. Miliani, B.G. Brunetti, A. Sgamellotti, C. Altavilla, E. Ciliberto, F. D’Acapito, Appl. Phys. A 92, 243 (2008)

    Article  ADS  Google Scholar 

  21. M. Gunn, G. Chottard, E. Riviere, J. Girerd, J. Chottard, Stud. Conserv. 47, 12 (2002)

    Article  Google Scholar 

  22. K.J. van den Berg, M.H. van Eikema Hommes, K.M. Groen, J.J. Boon, B.H. Berrie, in Actes Congr. Art et chimie, la couleur, ed. by J. Goupy, J.-P. Mohen (CNRS Editions, Paris, 2000), pp. 18–21

    Google Scholar 

  23. P. Richardin, V. Mazel, P. Walter, O. Laprévote, A. Brunelle, J. Am. Soc. Mass Spectrom. 22, 1729 (2011)

    Article  ADS  Google Scholar 

  24. F. Cariati, L. Rampazzi, L. Toniolo, A. Pozzi, Stud. Conserv. 45, 180 (2000)

    Article  Google Scholar 

  25. M.P. Di Bonaventura, M. Del Gallo, P. Cacchio, C. Ercole, A. Lepidi, Geomicr. J. 16, 55 (1999)

    Article  Google Scholar 

  26. C. Sabbioni, G. Zappia, N. Ghedini, G. Gobbi, O. Favoni, Atmos. Environ. 32, 215 (1995)

    Article  ADS  Google Scholar 

  27. A. Nevin, J.L. Meliac, I. Osticioli, G. Gautiere, M.P. Colombini, J. Cult. Her. 9, 154 (2008)

    Article  Google Scholar 

  28. J.M. Holder, D. Wynn-Williams, F. Rull Perez, H.G. Edwards, New Phytol. 145, 271 (2000)

    Article  Google Scholar 

  29. A. Casoli, S. Negri, G. Palla, in Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, ed. by V Fassina (Venice, 2000), p. 553

  30. L. Rampazzi, A. Andreotti, I. Bonaduce, M.P. Colombini, C. Colombo, L. Toniolo, Talanta 63, 967 (2004)

    Article  Google Scholar 

  31. R. Mazzeo, G. Chiavari, G. Morigi, in Le Pellicole Ad Ossalati: Origine e Significato Nella Conservazione Delle Opere D’arte, (Milano, 1989), p. 271

  32. E. Moffatt, N. Adair, G. Young in Application of Science in Examination of Works of Art: Proceedings of the Seminar, Museum of Fine Arts Boston, ed. by P. England, L van Zelst (USA, 1983), p. 234

  33. A. Lluveras, S. Boularand, A. Andreotti, M. Vendrell-Saz, Appl. Phys. A 99, 363 (2010)

    Article  ADS  Google Scholar 

  34. C. Higgit, R. White, Nat. Gall. Tech. Bull. 26, 88 (2005)

    Google Scholar 

  35. O.W. Purvis, Lichenologist 16, 197 (1984)

    Article  Google Scholar 

  36. K. Castro, A. Sarmiento, I. Martinez-Arkarazo, J.M. Madariaga, L.A. Fernandez, Anal. Chem. 80, 4103 (2008)

    Article  Google Scholar 

  37. R. Ramamurthy, E.A. Secco, Can. J. Chem. 48, 3510 (1970)

    Article  Google Scholar 

  38. P. Tarte, Spectrochim. Acta 13, 107 (1958)

    Article  ADS  Google Scholar 

  39. L. Robinet, M.C. Corbeil, Stud. Conserv. 48, 23 (2003)

    Google Scholar 

  40. C. Giangrande, in Recent Advance in the Conservation and Analysis of Artefacts: Jubilee Conservation Conference, (Summer Schools Press, London, 1987), p. 135

  41. M.C. D’Antonio, D. Palacios, L. Coggiola, E.J. Baran, Spectrochim. Acta A 68, 424 (2007)

    Article  ADS  Google Scholar 

  42. R. Mazzeo, S. Prati, M. Quaranta, E. Joseph, E. Kendix, M. Galeotti, Anal. Bional. Chem. 392, 65 (2008)

    Article  Google Scholar 

  43. M. Menu, E. Itié, E. Ravaud, M. Eveno, E. Lambert, E. Laval, I. Reiche, R. Mazzeo, M.L. Amadori, I. Bonacini, E. Joseph, S. Prati, G. Sciutto, in Studying Old Master Paintings: Technology and Practice, ed. by M. Spring (Archetype Publications, London, 2011), p. 37

    Google Scholar 

  44. R. Mazzeo, M. Menu, M.L. Amadori, I. Bonacini, E. Itié, M. Eveno, E. Joseph, E. Lambert, E. Laval, S. Prati, E. Ravaud, G. Sciutto, in Studying Old Master Paintings: Technology and Practice, ed. by M. Spring (Archetype Publications, London, 2011), p. 44

    Google Scholar 

  45. R.J. Gettens, G.L. Stout, Painting Materials a Short Encyclopaedia (Dover Publications Inc., New York, 1966)

    Google Scholar 

  46. P.D. Donovan, T.M. Moynehan, Corr. Sci. 5, 803 (1965)

    Article  Google Scholar 

  47. R.J. Gettens, H. Kuhn, W.T. Chase, L. White, in Artists’ Pigments: A Handbook of Their History and Characteristics, ed. by A. Roy (National Gallery of Art, Washington, 1993), p. 67

    Google Scholar 

  48. M. Cotte, E. Checroun, J. Susini, P. Walter, Appl. Phys. A 89, 841 (2007)

    Article  ADS  Google Scholar 

  49. C.S. Tumosa, M.F. Mecklenburg, Rev. Conserv. 6, 39 (2005)

    Google Scholar 

Download references

Acknowledgments

Part of this research has been funded by the European project “CHARISMA” FP7 INFRASTRUCTURE n.228330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prati, S., Bonacini, I., Sciutto, G. et al. ATR-FTIR microscopy in mapping mode for the study of verdigris and its secondary products. Appl. Phys. A 122, 10 (2016). https://doi.org/10.1007/s00339-015-9519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9519-z

Keywords

Navigation