Skip to main content
Log in

The effect of ferromagnetism on the critical supercurrent in topological insulator Josephson junction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To guide the potential applications of topological insulator, we provide a theoretical investigation for a finite temperature and an arbitrary length scale Josephson junction in the Furusaki–Tsukada formula. We have shown theoretically that a large degree of control over the generated critical supercurrent can be obtained by changing directions of the magnetizations in ferromagnet. The special importance for experimental measurements is the asymmetric character, oscillatory feature arising in the Fermi energy window, and energy shift phenomenon unveiled by a top gate voltage, which are independent of magnetization amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.D. Josephson, The discovery of tunnelling supercurrents. Rev. Mod. Phys. 46, 251–254 (1974)

    Article  ADS  Google Scholar 

  2. H. Hilgenkamp, J. Mannhart, Grain boundaries in high-superconductors. Rev. Mod. Phys. 74, 485–549 (2002)

    Article  ADS  Google Scholar 

  3. B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)

    Article  MATH  ADS  Google Scholar 

  4. A.I. Buzdin, A.E. Koshelev, Periodic alternating 0- and π-junction structures as realization of φ-Josephson junctions. Phys. Rev. B 67, 220504 (2003)

    Article  ADS  Google Scholar 

  5. L. Trifunovic, Long-range superharmonic Josephson current. Phys. Rev. Lett. 107, 047001 (2011)

    Article  ADS  Google Scholar 

  6. A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005)

    Article  ADS  Google Scholar 

  7. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  8. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  ADS  Google Scholar 

  9. M.G. Vergniory, T.V. Menshchikova, S.V. Eremeev, E. Chulkov, Bulk and surface electronic structure of SnBi4Te7 topological insulator. Appl. Surf. Sci. 267, 146–149 (2013)

    Article  ADS  Google Scholar 

  10. Z. Li, Y. Meng, J. Pan, T. Chen, X. Hong, S. Li, X. Wang, F. Song, B. Wang, Indications of topological transport by universal conductance fluctuations in Bi2Te2Se microflakes. Appl. Phys. Express 7, 065202 (2014)

    Article  ADS  Google Scholar 

  11. T.V. Menshchikova, S.V. Eremeev, E.V. Chulkov, Electronic structure of SnSb2Te4 and PbSb2Te4 topological insulators. Appl. Surf Sci. 267, 1–3 (2013)

    Article  ADS  Google Scholar 

  12. L. Fu, C.L. Kane, Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  13. L. Fu, C.L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  14. H.J. Chen, K.D. Zhu, Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system. Nanoscale Res. Lett. 9, 166 (2014)

    Article  ADS  Google Scholar 

  15. Y. Tanaka, T. Yokoyama, N. Nagaosa, Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009)

    Article  ADS  Google Scholar 

  16. J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, Interplay between superconductivity and ferromagnetism on a topological insulator. Phys. Rev. B 81, 184525 (2010)

    Article  ADS  Google Scholar 

  17. M. Wimmer, A.R. Akhmerov, J.P. Dahlhaus, C.W.J. Beenakker, Quantum point contact as a probe of a topological superconductor. New J. Phys. 13, 053016 (2011)

    Article  ADS  Google Scholar 

  18. J. Nilsson, A.R. Akhmerov, C.W.J. Beenakker, Splitting of a cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008)

    Article  ADS  Google Scholar 

  19. M. Wimmer, A.R. Akhmerov, M.V. Medvedyeva, J. Tworzyd lo, C.W.J. Beenakker, Majorana bound states without vortices in topological superconductors with electrostatic defects. Phys. Rev. Lett. 105, 046803 (2010)

    Article  ADS  Google Scholar 

  20. L. Fu, C.L. Kane, Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408(R) (2009)

    Article  ADS  Google Scholar 

  21. C.W.J. Beenakker, Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013)

    Article  ADS  Google Scholar 

  22. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  23. C. Olund, E. Zhao, Current-phase relation for Josephson effect through helical metal. Phys. Rev. B 86, 214515 (2012)

    Article  ADS  Google Scholar 

  24. M. Snelder, M. Veldhorst, A.A. Golubov, A. Brinkman, Andreev bound states and current-phase relations in three-dimensional topological insulators. Phys. Rev. B 87, 104507 (2013)

    Article  ADS  Google Scholar 

  25. C.W.J. Beenakker, D.I. Pikulin, T. Hyart, H. Schomerus, J.P. Dahlhaus, Fermion-parity anomaly of the critical supercurrent in the quantum spin-Hall effect. Phys. Rev. Lett. 110, 017003 (2013)

    Article  ADS  Google Scholar 

  26. Y. Yang, K.-W. Wei, C. Bai, Magnetoresistance through a ferromagnet/superconductor/ferromagnet junction on the surface of a topological insulator. Appl. Phys. Express 7, 023001 (2014)

    Article  ADS  Google Scholar 

  27. A. Furusaki, M. Tsukada, Dc Josephson effect and Andreev reflection. Solid State Commun. 78, 299–302 (1991)

    Article  ADS  Google Scholar 

  28. A. Furusaki, M. Tsukada, Current-carrying states in Josephson junctions. Phys. Rev. B 43, 10164–10169 (1991)

    Article  ADS  Google Scholar 

  29. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011)

    Article  Google Scholar 

  30. B. Sacepe, J.B. Oostinga, J. Li, A. Ubaldini, N.J.G. Couto, E. Giannini, A.F. Morpurgo, Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat. Commun. 2, 575 (2011)

    Article  ADS  Google Scholar 

  31. E. Wang, H. Ding, A.V. Fedorov, W. Yao, Z. Li, Y.-F. Lv, K. Zhao, L.-G. Zhang, Z. Xu, J. Schneeloch, R. Zhong, S.-H. Ji, L. Wang, K. He, X. Ma, G. Gu, H. Yao, Q.-K. Xue, X. Chen, S. Zhou, Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 621–625 (2013)

    Article  MATH  Google Scholar 

  32. B. Muhlschlegel, Die thermodynamischen funktionen des supraleiters. Z. Phys. 155, 313–327 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  33. Z. Wu, J. Li, Spin-related tunneling through a nanostructured electric- magnetic barrier on the surface of a topological insulator. Nanoscale Res. Lett. 7, 90 (2012)

    Article  ADS  Google Scholar 

  34. C. Bai, Y. Yang, Gate-tuned Josephson effect on the surface of a topological insulator. Nanoscale Res. Lett. 9, 515 (2014)

    Article  Google Scholar 

  35. Z. Radovic, N. Lazardes, N. Flytzanis, Josephson effect in double-barrier superconductor-ferromagnet junctions. Phys. Rev. B 68, 014501 (2003)

    Article  ADS  Google Scholar 

  36. J. Linder, A.M. Black-Schaffer, T. Yokoyama, S. Doniach, A. Sudbø, Josephson current in graphene: role of unconventional pairing symmetries. Phys. Rev. B 80, 094522 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1204110, 11504005, and U1204115). This Project was also supported by China Postdoctoral Science Foundation (Grant No. 2013M540126). C. B. also acknowledges partial support from Program of Young Core Teachers in Higher Education Institutions of Henan Province, China (Grant No. 2013GGJS-148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxu Bai.

Appendix

Appendix

In this section, we use a standard formula of retarded Green’s function to obtain the DC Josephson current of the topological insulator Josephson junction. The retarded Green’s function can be constructed by the following four types of quasiparticle injection processes: type 1 (electron-like quasiparticle incident from the left), type 2 (hole incident from the left), type 3 (electron-like quasiparticle incident from the right), and type 4 (hole incident from the right).

For an electron-like quasiparticle incident from the left superconductor lead, the wave functions in the type 1 scenario can be written as below:

$$\varPsi_{1} (x) = \left\{ {\begin{array}{*{20}l} {\varPsi_{S}^{e + } + r^{1} \varPsi_{S}^{e - } + r_{A}^{1} \varPsi_{S}^{h - } ,} \hfill & {x \le 0} \hfill \\ {t^{1} \varPsi_{S}^{e + } + t_{A}^{1} \varPsi_{S}^{h + } ,} \hfill & {x \ge l} \hfill \\ \end{array} } \right.$$
(8)

For a hole-like quasiparticle incident from the left superconductor lead, the wave functions in the type 2 scenario can be written as the following forms:

$$\varPsi_{2} (x) = \left\{ {\begin{array}{*{20}l} {\varPsi_{S}^{h + } + r^{2} \varPsi_{S}^{h - } + r_{A}^{2} \varPsi_{S}^{e - } ,} \hfill & {x \le 0} \hfill \\ {t_{A}^{2} \varPsi_{S}^{e + } + t^{2} \varPsi_{S}^{h + } ,} \hfill & {x \ge l} \hfill \\ \end{array} } \right.$$
(9)

For an electron-like quasiparticle incident from the right superconductor lead, the wave functions in the type 3 scenario can be written as below:

$$\varPsi_{3} (x) = \left\{ {\begin{array}{*{20}l} {t^{3} \varPsi_{S}^{e - } + t_{A}^{3} \varPsi_{S}^{h - } ,} \hfill & {x \le 0} \hfill \\ {\varPsi_{S}^{e - } + r^{3} \varPsi_{S}^{e + } + r_{A}^{3} \varPsi_{S}^{h + } ,} \hfill & {x \ge l} \hfill \\ \end{array} } \right.$$
(10)

For a hole-like quasiparticle incident from the right superconductor lead, the wave functions in the type 4 scenario can be written as the following forms:

$$\varPsi_{4} (x) = \left\{ {\begin{array}{*{20}l} {t_{A}^{4} \varPsi_{S}^{e - } + t^{4} \varPsi_{S}^{h - } ,} \hfill & {x \le 0} \hfill \\ {\varPsi_{S}^{h - } + r^{4} \varPsi_{S}^{h + } + r_{A}^{4} \varPsi_{S}^{e + } ,} \hfill & {x \ge l} \hfill \\ \end{array} } \right.$$
(11)

Because of the translational invariance along y-axis, the wave functions \(\varPsi_{i} \left( {x, y} \right) = \varPsi_{i} \left( x \right)e^{iqy}\) in the superconducting leads. Thus, we can write the retarded Green’s function as \(G(x,\;x^{\prime},\;y,\;y^{\prime}) = \sum\nolimits_{q} {G(x,x^{\prime})e^{{iq(y - y^{\prime})}} }\). Based on Eqs. 811, the retarded Green’s function G(xx ) can be written as

$$ G(x,x^{\prime}) = \left\{ \begin{array}{l} \alpha_{1} \varPsi_{3} (x)\varPsi_{1}^{T} (x^{\prime}) + \alpha_{2} \varPsi_{3} (x)\varPsi_{2}^{T} (x^{\prime}) \\ \; + \alpha_{3} \varPsi_{4} (x)\varPsi_{1}^{T} (x^{\prime}) + \alpha_{4} \varPsi_{4} (x)\varPsi_{2}^{T} (x^{\prime}), \quad {x \le x^{\prime}} \\ \beta_{1} \varPsi_{1} (x)\varPsi_{3}^{T} (x^{\prime}) + \beta_{2} \varPsi_{1} (x)\varPsi_{4}^{T} (x^{\prime}) \\ \; + \beta_{3} \varPsi_{2} (x)\varPsi_{3}^{T} (x^{\prime}) + \beta_{4} \varPsi_{2} (x)\varPsi_{4}^{T} (x^{\prime}),\quad x \ge x^{\prime} \\ \end{array} \right. $$
(12)

where \(\varPsi_{i}^{T} (x)\) with i = 1 − 4 are the wave functions corresponding to the conjugate processes of Ψ i (x). The parameters α i and β i with i = 1 − 4 can be determined by the boundary conditions of Green’s function

$$G(x + 0,x) - G(x - 0,x) = \hbar^{ - 1} v_{F}^{ - 1} (i\tau_{z} \sigma_{y} )$$
(13)

where τ z is the Pauli matrix actions in the electron–hole space.

The DC Josephson current for topological insulator Josephson junction is determined by electric charge conservation rule

$$\partial_{t} P + \partial_{x} J_{x} + S = 0$$
(14)

where \(P = e(\varPsi_{ \uparrow }^{\dag } \varPsi_{ \uparrow } + \varPsi_{ \downarrow }^{\dag } \varPsi_{ \downarrow } )\), \(J_{x} = iev_{F} (\varPsi_{ \uparrow }^{\dag } \varPsi_{ \downarrow } - \varPsi_{ \downarrow }^{\dag } \varPsi_{ \uparrow } )\), and \(S = 2e\text{Im} [\Delta^{ * } \varPsi_{ \downarrow } \varPsi_{ \uparrow } - \Delta^{ * } \varPsi_{ \uparrow } \varPsi_{ \downarrow } ]\) are electric charge density, electric current, and source term, respectively.

Therefore, after straightforward but tedious derivation following Ref. [27], we find that the total Josephson current is given by

$$I = \frac{e\Delta }{2\hbar }\sum\limits_{\sigma q} {k_{B} T\sum\limits_{{\omega_{n} }} {\frac{1}{{2\varOmega_{n} }}} } \left( {k_{n}^{e} + k_{n}^{h} } \right)\left( {\frac{{r_{n}^{1} }}{{k_{n}^{e} }} - \frac{{r_{n}^{2} }}{{k_{n}^{h} }}} \right)$$
(15)

where \(k_{n}^{e}\), \(k_{n}^{h}\), \(r_{n}^{1}\), and \(r_{n}^{2}\) are obtained from \(k_{S}^{e}\), \(k_{S}^{e}\), \(r_{A}^{1}\), and \(r_{A}^{2}\) by the analytic continuation E →  n , the Matsubara frequencies are \(\omega_{n} = \pi k_{B} T\left( {2n + 1} \right)\) with n = 0, ±1, ±2,…, and \(\varOmega_{n} = \sqrt {\omega_{n}^{2} + \Delta^{2} }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Wei, KW., Shen, Y. et al. The effect of ferromagnetism on the critical supercurrent in topological insulator Josephson junction. Appl. Phys. A 121, 1139–1146 (2015). https://doi.org/10.1007/s00339-015-9477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9477-5

Keywords

Navigation