Skip to main content
Log in

Numerical investigation of In0.23Ga0.77As-based planar Gunn diodes with fundamental frequency up to 116 GHz

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The current capability and frequency of In0.23Ga0.77As-based planar Gunn diode have been studied using numerical simulation. Our simulated results are well in agreement with the experimental observation with fundamental frequency operating up to 116 GHz. Through the Fast Fourier transform algorithm, it has been revealed that oscillating frequency tunes downward slightly with increased applied voltage above threshold voltage, and a second-harmonic frequency is observed at 233 GHz for 1.45-μm channel length. This structure provides feasibility of generating a tunable millimeter wave or terahertz wave source and has an overwhelming advantage over equivalent traditional vertical structure because of increased facilitated integration and flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.B. Gunn, Solid State Commun. 1(4), 88–91 (1963)

    Article  ADS  Google Scholar 

  2. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, 2008)

  3. A. Förster, M.I. Lepsa, D. Freundt et al., Appl. Phys. A 87(3), 545–558 (2007)

    Article  ADS  Google Scholar 

  4. H. Eisele, Electron. Lett. 46(6), 422–423 (2010)

    Article  Google Scholar 

  5. O. Yilmazoglu, K. Mutamba, D. Pavlidis, T. Karaduman, I.E.E.E. Trans, Electron Devices 55(6), 1563–1567 (2008)

    Article  ADS  Google Scholar 

  6. Y.Y. Zhao, C.J. Wei, H. Beneking, Electronics Lett. 18(19), 835–836 (1982)

    Article  Google Scholar 

  7. S.J.J. Teng, R.E. Goldwasser, IEEE Electron Dev. Lett. 10(9), 412–414 (1989)

    Article  ADS  Google Scholar 

  8. H. Eisele, R. Kamoua, I.E.E.E. Trans, Microw. Theory Tech. 52(10), 2371–2378 (2004)

    Article  Google Scholar 

  9. F. Amir, C. Mitchell, M. Missous, Adv. Semicond. Dev. Microsyst. (ASDAM), 2010 8th International Conference on IEEE (2010)

  10. V. Papageorgiou, Integration of Planar Gunn Diodes and HEMTs for High-Power MMIC Oscillators, Ph.D. Dissertation, University of Glasgow, 2014

  11. C. Li, A. Khalid, N. Pilgrim, M.C. Holland, G. Dunn, D.S.R. Cumming, J. Phys. Conf. Series. IOP Publishing 193(1), 012029 (2009)

    Article  ADS  Google Scholar 

  12. P.H. Siegel, IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  ADS  Google Scholar 

  13. N. Kukutsu, Y. Kado, N.T.T. Tech, Rev. 7(3), 37–40 (2009)

    Google Scholar 

  14. C. Li, Design and Characterisation of Millimeter-Wave Planar Gunn Diodes and Integrated Circuits, Ph.D. Dissertation, University of Glasgow, 2012

  15. A. Khalid, N.J. Pilgrim, G.M. Dunn, M.C. Holland, C.R. Stanley, I.G. Thayne, D.R.S. Cumming, IEEE Electron Device Lett. 28(10), 849–851 (2007)

    Article  ADS  Google Scholar 

  16. C. Li, A. Khalid, H. Paluchowski, S.H.P. Caldwell, M.C. Holland, G.M. Dunn, I.G. Thayne, D.R. Cumming, Solid-State Electron. 64, 67–72 (2011)

    Article  ADS  Google Scholar 

  17. A. Khalid, C. Li, V. Papageogiou, G.M. Dunn, M.J. Steer, I.G. Thayne, D.R.S. Cumming, IEEE Electron. Dev. Lett. 34(1), 39–41 (2013)

    Article  ADS  Google Scholar 

  18. A. Khalid, G.M. Dunn, R.F. Macpherson, S. Thoms, D. Macintyre, C. Li, D.R.S. Cumming, J. Appl. Phys. 115(11), 114502 (2014)

    Article  ADS  Google Scholar 

  19. N.J. Pilgrim, A. Khalid, G.M. Dunn, D.R.S. Cumming, Semicond. Sci. Technol. 23(7), 075013 (2008)

    Article  ADS  Google Scholar 

  20. M.I. Maricar, A. Khalid, J. Glover, G.A. Evans, P. Vasileious, C. Li, C.H. Oxley, Solid State Electronics 99, 38–40 (2014)

    Article  ADS  MATH  Google Scholar 

  21. P. Bhattacharya, Properties of Lattice-Matched and Strained Indium Gallium Arsenide (INSPEC, the Institution of Electrical Engineers, London, 1993)

  22. P.C. Chao, M.S. Shur, R.C. Tiberio, K.G. Duh, P.M. Smith, IEEE Trans. Electron Dev. 36(3), 461 (1989)

    Article  ADS  Google Scholar 

  23. K.L. Tan, D.C. Streit, R.M. Dia, S.K. Wang, A.C. Han, P. Chow, H.C. Yeii, IEEE Electron Device Lett. 12, 5 (1991)

    Article  Google Scholar 

  24. H.M. Shieh, W.C. Hsu, C.L. Wu, T.S. Wu, Jpn. J. Appl. Phys. 32(3A), L303 (1993)

    Article  ADS  Google Scholar 

  25. C. Li, A. Khalid, L. B. Lok, N. J.Pilgrim, M. C. Holland, G. M. Dunn, D. R. S. Cumming, Infrared Millimeter and Terahertz Waves (IRMMW-THz), 35th International Conference on. IEEE (2010)

  26. See http://www.silvaco.com for Atlas User’s Manual, Version 5.16.3.R

  27. J.J. Barnes, R.J. Lomax, G.I. Haddad, IEEE Trans. Electron Device 23, 9 (1976)

    Article  Google Scholar 

  28. W. Kowalsky, A. Schlachetzkain, D.H. Wehmann, Solid-State Electron. 27, 2 (1984)

    Article  Google Scholar 

  29. H. Kroemer, IEEE Trans. Electron Device 1, 27–40 (1966)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by PhD Start-up Fund (Grant No. 11zx7132), the National Natural Science Foundation of China (Grant No. 61376099 and 11235008) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130203130002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Liu, H.X. & Wen, C. Numerical investigation of In0.23Ga0.77As-based planar Gunn diodes with fundamental frequency up to 116 GHz. Appl. Phys. A 120, 1593–1598 (2015). https://doi.org/10.1007/s00339-015-9367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9367-x

Keywords

Navigation