Skip to main content
Log in

Formation of GaPd2 and GaPd intermetallic compounds on GaN(0001)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Palladium was deposited gradually under ultrahigh vacuum onto a well-defined surface of (0001)-oriented n-type GaN, at room temperature. Each deposition step was followed by annealing. Physicochemical properties of the Pd adlayers were in situ investigated prior to and after annealing by the X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and atomic force microscopy techniques. Annealing resulted in the formation of GaPd2 and GaPd intermetallic compounds at 550 °C and at 800 °C. Even for thicker layers, the compounds were strongly dispersed, forming 3D nanostructures. The substrate uncovered by the compounds revealed Ga-rich GaN(0001)-(1 × 1) surface. Formation of Ga-Pd-N bonds or Pd nitrides was not detected at the surface. The Ga-Pd intermetallic compound surface engineered on the GaN(0001) substrate can be used as the strongly dispersed catalyst or a model catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Kovnir, M. Armbrüster, D. Teschner, T.V. Venkov, F.C. Jentoft, A. Knop-Gericke, Yu. Grin, R. Schlögl, Sci. Technol. Adv. Mater. 8, 420 (2007)

    Article  Google Scholar 

  2. J. Osswald, R. Giedigkeit, R.E. Jentoft, M. Armbrüster, F. Girgsdies, K. Kovnir, T. Ressler, Y. Grin, R. Schlögl, J. Catal. 258, 210 (2008)

    Article  Google Scholar 

  3. J. Osswald, R. Giedigkeit, R.E. Jentoft, M. Armbrüster, F. Girgsdies, K. Kovnir, T. Ressler, Y. Grin, R. Schlögl, J. Catal. 258, 219 (2008)

    Article  Google Scholar 

  4. K. Kovnir, M. Armbrüster, D. Teschner, T. Venkov, L. Szentmiklósi, F.C. Jentoft, A. Knop-Gericke, Y. Grin, R. Schlögl, Surf. Sci. 603, 1784 (2009)

    Article  ADS  Google Scholar 

  5. M. Armbrüster, R. Schlögl, Y. Grin, Sci. Technol. Adv. Mater. 15, 1 (2014)

    Article  Google Scholar 

  6. A. Borodzinski, G.C. Bond, Catal. Rev. Sci. Eng. 50, 379 (2008)

    Article  Google Scholar 

  7. W.M.H. Sachtler, Catal. Rev. Sci. Eng. 14, 193 (1976)

    Article  Google Scholar 

  8. M. Ruff, N. Takehiro, P. Liu, J.K. Norskov, R.J. Behm, ChemPhysChem 8, 2068 (2007)

    Article  Google Scholar 

  9. F. Gao, D.W. Goodman, Chem. Soc. Rev. 41, 8009 (2012)

    Article  Google Scholar 

  10. J. Prinz, R. Gaspari, Q.S. Stöckl, P. Gille, M. Armbrüster, H. Brune, O. Gröning, C.A. Pignedoli, D. Passerone, R. Widmer, J. Phys. Chem. C 118, 12260 (2014)

    Article  Google Scholar 

  11. M.A. Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Burm, W. Schaff, Appl. Phys. Lett. 66, 1083 (1995)

    Article  ADS  Google Scholar 

  12. F.A. Ponce, D.P. Bour, Nature 386, 351 (1997)

    Article  ADS  Google Scholar 

  13. W.S. Tan, P.A. Houston, P.J. Parbrook, D.A. Wood, G. Hill, C.R. Whitehouse, Appl. Phys. Lett. 80, 3207 (2002)

    Article  ADS  Google Scholar 

  14. U. Tanaka, T. Maruyama, K. Akimoto, J. Cryst. Growth 201–202, 444 (1999)

    Article  Google Scholar 

  15. Q.Z. Liu, S.S. Lau, N.R. Perkins, T.F. Kuech, Appl. Phys. Lett. 69, 1722 (1996)

    Article  ADS  Google Scholar 

  16. M. Grodzicki, P. Mazur, S. Zuber, J. Pers, A. Ciszewski, Mater. Sci. Pol. 32, 252 (2014)

    Article  ADS  Google Scholar 

  17. C. Nörenberg, M.R. Castell, Surf. Sci. 601, 4438 (2007)

    Article  ADS  Google Scholar 

  18. C.C. Kim, W.H. Kim, J.H. Je, D.-W. Kim, H.K. Baik, S.-M. Lee, Electrochem. Solid State Lett. 3, 335 (2000)

    Article  Google Scholar 

  19. K.J. Duxstad, E.E. Haller, K.M. Yu, J. Appl. Phys. 81, 3134 (1997)

    Article  ADS  Google Scholar 

  20. A.R. Smith, R.M. Feenstra, M.S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, J. Vac. Sci. Technol. B 16(4), 2242 (1998)

    Article  Google Scholar 

  21. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 11, 577 (1988)

    Article  Google Scholar 

  22. C.J. Powell, A. Jablonski, NIST Standard Reference Database. US National Institute of Standards and Technology, Gaithersburg, MD (2010)

  23. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  ADS  Google Scholar 

  24. J.R. Waldrop, R.W. Grant, Appl. Phys. Lett. 68, 2879 (1996)

    Article  ADS  Google Scholar 

  25. M. Methfessel, D. Hennig, M. Scheffer, Phys. Rev. B 46, 4816 (1992)

    Article  ADS  Google Scholar 

  26. K. Kovnir, D. Teschner, M. Armbrüster, P. Schnörch, M. Hävecker, A. Knop-Gericke, Y. Grin, R. Schlögl, BESSY Highlights 2007, 22 (2007)

    Google Scholar 

  27. D. Rosenthal, R. Widmer, R. Wagner, P. Gille, M. Armbrüster, Y. Grin, R. Schlögl, O. Gröning, Langmuir 28, 6848 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Stanisław Surma for assistance during preparation of the manuscript. The work was supported by Wroclaw Research Centre EIT+ within the project “The Application of Nanotechnology in Advanced Materials”—NanoMat (POIG.01.01.02-02-002/08) co-financed by the European Regional Development Fund (operational Programme Innovative Economy, 1.1.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grodzicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grodzicki, M., Mazur, P., Pers, J. et al. Formation of GaPd2 and GaPd intermetallic compounds on GaN(0001). Appl. Phys. A 120, 1443–1451 (2015). https://doi.org/10.1007/s00339-015-9331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9331-9

Keywords

Navigation