Skip to main content
Log in

Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the “bricks and mortar” view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based “bricks and mortar” wall structure as in epidermis, the outermost layer of the human skin. “Bricks and mortar” pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.S. Shin, J.Y. Oh, H. Sohn, Theoretical and experimental investigations into laser ablation of polyimide and copper films with 355-nm Nd:YVO4 laser. J. Mater. Process. Technol. 187–188, 260–263 (2007)

    Article  Google Scholar 

  2. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Machining of submicron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106 (1995)

    Article  ADS  Google Scholar 

  3. Y. Tsuboi, N. Kimoto, M. Kabeshita, A. Itaya, Pulsed laser deposition of collagen and keratin. J. Photochem. Photobiol., A 145, 209–214 (2001)

    Article  Google Scholar 

  4. A. Nakamura, M. Arimoto, K. Takeuchi, T. Fujii, A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol. Pharm. Bull. 25, 569–572 (2002)

    Article  Google Scholar 

  5. E.B. Lane, Keratin intermediate filaments and diseases of the skin (Landes Bioscience, Austin, 2000)

    Google Scholar 

  6. B. Peters, J. Kirfel, H. Bussow, M. Vidal, T.M. Magin, Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol. Biol. Cell 12, 1775–1789 (2001)

    Article  Google Scholar 

  7. E.B. Lane, W.H.I. McLean, Keratins and skin disorders. J. Pathol. 204, 355–366 (2004)

    Article  Google Scholar 

  8. T. Imae, Skin Bioscience: A Molecular Approach (CRC Press, Boca Reton, 2014)

    Book  Google Scholar 

  9. Understanding the causes of skin disease. www.hse.gov.uk. 3 June 2012

  10. Z. Nemes, P.M. Steinert, Bricks and mortar of the epidermal barrier. Exp. Mol. Med. 31, 5–19 (1999)

    Article  Google Scholar 

  11. J.H. Parka, J.W. Leeb, Y.C. Kimb, M.R. Prausnitz, The effect of heat on skin permeability. Int. J. Pharm. 359, 94–103 (2008)

    Article  Google Scholar 

  12. S.E. Cross, M.S. Roberts, Physical enhancement of transdermal drug application: is delivery technology keeping up with pharmaceutical development? Curr. Drug Deliv. 1, 81–92 (2004)

    Article  Google Scholar 

  13. J.A. Down, N.G. Harvey, Minimally invasive systems for transdermal drug delivery, in Hadgraft (Marcel Dekker, 2003)

  14. Y.B. Schuetz, A. Naik, R.H. Guy, Y.N. Kalia, Emerging strategies for the transdermal delivery of peptide and protein drugs. Exp. Opin. Drug Deliv. 2, 533–548 (2005)

    Article  Google Scholar 

  15. S. Lugomer, A. Maksimovi, B. Farkas, Z. Geretovszky, T. Szorenyi, A.L. Toth, Z. Zolnai, I. Barsony, Multipulse irradiation of silicon by femtosecond laser pulses: variation of surface morphology. Appl. Surf. Sci. 258, 3589–3597 (2012)

    Article  ADS  Google Scholar 

  16. S. Baudach, J. Bonse, W. Kautek, Ablation experiments on polyimide with femtosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 69, S395–S398 (1999)

    Article  ADS  Google Scholar 

  17. K. Jamshidi-Ghaleh, H. Masalehdan, IR femtosecond laser microstructuring of photochromic glasses. Eur. Phys. J. Appl. Phys. 56, 10501 (2011)

    Article  ADS  Google Scholar 

  18. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196–198 (1982)

    Article  ADS  Google Scholar 

  19. J. Jandeleit, G. Urbasch, H. Hoffmann, H.G. Treusch, E. Kreutz, Picosecond laser ablation of thin copper films. Appl. Phys. A 63, 117–121 (1996)

    Article  ADS  Google Scholar 

  20. P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233(1), 275–287 (2004)

    Article  ADS  Google Scholar 

  21. M. Bähr, G. Heinrich, K.-P. Stolberg, T. Wütherich, R. Böhme, Ablation of dielectrics without substrate damage using ultra-short-pulse laser systems, in European Photovoltaic Solar Energy Valencia, Spain, 2010, pp. 2490–2496

  22. T. Rublack, G. Seifert, Femtosecond laser delamination of thin transparent layers from semiconducting substrates. Opt. Mater. Express 1(4), 543–550 (2011)

    Article  Google Scholar 

  23. T. Rublack, S. Hartnauer, P. Kappe, C. Swiatkowski, G. Seifert, Selective ablation of thin SiO2 layers on silicon substrates by femto- and picosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 103, 43–50 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, B.S., Khan, H.U., Dou, Y. et al. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses. Appl. Phys. A 120, 1415–1425 (2015). https://doi.org/10.1007/s00339-015-9327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9327-5

Keywords

Navigation