Skip to main content

Skin Involved Nanotechnology

Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 14 Accesses

Abstract

This book chapter reviews the recent progress of nanotechnologies in skin research. It begins with a brief introduction to the analysis of research trends of nanotechnologies in the skin in the past 5 years. Next, many recent advances on the critical features of nanotechnologies in skin care (e.g., sun protection, antioxidation, and antiaging), skin wound healing and disease treatment (e.g., nanofibers, nanoparticles, and integrated system), and tissue engineering skin are discussed. This book chapter further highlights the applications of electrospray short nanofiber microspheres, electrospun nanofibers, 3D nanofiber scaffolds, metal nanoparticles, as well as liposomes and exosomes on wound healing. Finally, this book chapter concludes with remarks on the challenges and future directions for applying nanotechnologies involved in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Rec 88:2–9

    Article  Google Scholar 

  2. Walker A, Hopkins C, Surda P (2020) Use of Google Trends to investigate loss-of-smell–related searches during the COVID-19 outbreak. Int Forum Allergy Rhinol 10:839–847

    Article  Google Scholar 

  3. Tijerina JD, Morrison SD, Nolan IT, Vail DG, Nazerali R, Lee GK (2019) Google Trends as a tool for evaluating public interest in facial cosmetic procedures. Aesthet Surg J 39(8):908–918

    Article  Google Scholar 

  4. McCarthy AD, McGoldrick DJ, Holubeck PA, Cohoes C, Bilek LD (2021) Social data: an underutilized metric for determining participation in COVID-19 vaccinations. Cureus 13(7):e16379

    Google Scholar 

  5. McCarthy AD, McGoldrick D (2021) Analyzing public interest in metabolic health-related search terms during COVID-19 using Google Trends. Cureus 13(6):e15715

    Google Scholar 

  6. Mahmoudi M (2018) Debugging nano–bio interfaces: systematic strategies to accelerate clinical translation of nanotechnologies. Trends Biotechnol 36(8):755–769

    Article  Google Scholar 

  7. Gasco-Buisson MC (2010) Key trends driving anti-aging skin care in 2009 and beyond. In: Textbook of aging skin. Springer, Berlin/Heidelberg

    Google Scholar 

  8. Fathi-Azarbayjani A, Qun L, Chan YW, Chan SY (2010) Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS PharmSciTech 11(3):1164–1170

    Article  Google Scholar 

  9. Manatunga DC, Godakanda VU, Herath H, de Silva RM, Yeh C-Y, Chen J-Y, Akshitha de Silva AA, Rajapaksha S, Nilmini R, Nalin de Silva KM (2020) Nanofibrous cosmetic face mask for transdermal delivery of nano gold: synthesis, characterization, release and zebra fish employed toxicity studies. R Soc Open Sci 7(9):201266

    Article  Google Scholar 

  10. Giacaman Fonseca A (2018) Development of bioactive electrospun scaffolds to support granulation tissue formation in non-healing wounds. University of Nottingham

    Google Scholar 

  11. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7(1):1–21

    Article  Google Scholar 

  12. Janani I, Lakra R, Kiran MS, Korrapati PS (2018) Selectivity and sensitivity of molybdenum oxide-polycaprolactone nanofiber composites on skin cancer: preliminary in-vitro and in-vivo implications. J Trace Elem Med Biol 49:60–71

    Article  Google Scholar 

  13. Jing J, An X, Luo Y, Chen L, Chu Z, Li KH (2021) A compact optical pressure sensor based on a III-nitride photonic chip with nanosphere-embedded PDMS. ACS Appl Electron Mater 3(5):1982–1987

    Article  Google Scholar 

  14. Su Y, Mainardi VL, Wang H, McCarthy A, Zhang YS, Chen S, John JV, Wong SL, Hollins RR, Wang G (2020) Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide. ACS Nano 14(9):11775–11786

    Article  Google Scholar 

  15. Aziz ZAA, Mohd-Nasir H, Ahmad A, Mohd Setapar SH, Peng WL, Chuo SC, Khatoon A, Umar K, Yaqoob AA, Mohamad Ibrahim MN (2019) Role of nanotechnology for design and development of cosmeceutical: application in makeup and skin care. Front Chem 7:739

    Article  Google Scholar 

  16. Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M (2021) The emerging role of nanotechnology in skincare. Adv Colloid Interf Sci 293:102437

    Article  Google Scholar 

  17. Egambaram OP, Kesavan Pillai S, Ray SS (2020) Materials science challenges in skin UV protection: a review. Photochem Photobiol 96(4):779–797

    Article  Google Scholar 

  18. Schneider SL, Lim HW (2019) A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed 35(6):442–446

    Article  Google Scholar 

  19. Dreno B, Alexis A, Chuberre B, Marinovich M (2019) Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 33(Suppl 7):34–46

    Article  Google Scholar 

  20. Zaki NAA, Mahmud S, Omarc AF (2018) Ultraviolet protection properties of commercial sunscreens and sunscreens containing Zno nanorods. J Phys Conf Ser 1083(1):012012

    Article  Google Scholar 

  21. Nikolić S, Keck CM, Anselmi C, Müller RH (2011) Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm 414:276–284. (1873-3476 (Electronic))

    Article  Google Scholar 

  22. Wissing SA, Müller RH (2003) Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 254:65–68. (0378-5173 (Print))

    Article  Google Scholar 

  23. Arianto A, Cindy C (2019) Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Open Access Maced J Med Sci 7:3757–3761. (1857-9655 (Print))

    Article  Google Scholar 

  24. Arianto A, Cella G, Bangun H (2019) Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on SPF by combination of soybean oil, avobenzone, and octyl methoxycinnamate. Open Access Maced J Med Sci 7:2751–2756. (1857-9655 (Print))

    Article  Google Scholar 

  25. Van Tran V, Moon JY, Lee YC (2019) Liposomes for delivery of antioxidants in cosmeceuticals: challenges and development strategies. J Control Release 300:114–140

    Article  Google Scholar 

  26. Chen J, Wei N, Lopez-Garcia M, Ambrose D, Lee J, Annelin C, Peterson T (2017) Development and evaluation of resveratrol, vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm 117:286–291

    Article  Google Scholar 

  27. Gokce EH, Korkmaz E, Tuncay-Tanriverdi S, Dellera E, Sandri G, Bonferoni MC, Ozer O (2012) A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int J Nanomed 7:5109–5117

    Google Scholar 

  28. Saez V, Souza IDL, Mansur CRE (2018) Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review. Int J Cosmet Sci 40(2):103–116

    Article  Google Scholar 

  29. Ben Haddada M, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S, Spadavecchia J, Morel AL (2020) Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf B Biointerfaces 189:110855

    Article  Google Scholar 

  30. Jimenez Z, Kim YJ, Mathiyalagan R, Seo KH, Mohanan P, Ahn JC, Kim YJ, Yang DC (2018) Assessment of radical scavenging, whitening and moisture retention activities of Panax ginseng berry mediated gold nanoparticles as safe and efficient novel cosmetic material. Artif Cells Nanomed Biotechnol 46(2):333–340

    Article  Google Scholar 

  31. Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R (2021) Nanoparticle platforms for dermal antiaging technologies: insights in cellular and molecular mechanisms. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14:e1746

    Google Scholar 

  32. Wu YZ, Tsai YY, Chang LS, Chen YJ (2021) Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals 14(11):1071

    Article  Google Scholar 

  33. Radwan RA, El-Sherif YA, Salama MM (2020) A novel biochemical study of anti-ageing potential of Eucalyptus camaldulensis bark waste standardized extract and silver nanoparticles. Colloids Surf B Biointerfaces 191:111004

    Article  Google Scholar 

  34. Shah M, Nawaz S, Jan H, Uddin N, Ali A, Anjum S, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2020) Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Mater Sci Eng C Mater Biol Appl 112:110889

    Article  Google Scholar 

  35. Lewinska A, Adamczyk-Grochala J, Bloniarz D, Olszowka J, Kulpa-Greszta M, Litwinienko G, Tomaszewska A, Wnuk M, Pazik R (2020) AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol 28:101337

    Article  Google Scholar 

  36. Shibuya S, Ozawa Y, Watanabe K, Izuo N, Toda T, Yokote K, Shimizu T (2014) Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One 9(10):e109288

    Article  Google Scholar 

  37. Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A (2020) Nanodelivery of phytobioactive compounds for treating aging-associated disorders. Geroscience 42(1):117–139

    Article  Google Scholar 

  38. Yucel C, Seker Karatoprak G, Degim IT (2019) Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J Microencapsul 36(2):180–191

    Article  Google Scholar 

  39. Bi Y, Xia H, Li L, Lee RJ, Xie J, Liu Z, Qiu Z, Teng L (2019) Liposomal vitamin D3 as an anti-aging agent for the skin. Pharmaceutics 11(7):311

    Article  Google Scholar 

  40. Wang FC, Hudson PL, Burk K, Marangoni AG (2022) Encapsulation of cycloastragenol in phospholipid vesicles enhances transport and delivery across the skin barrier. J Colloid Interface Sci 608(Pt 2):1222–1228

    Article  Google Scholar 

  41. Pardeike J, Hommoss A, Muller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–184

    Article  Google Scholar 

  42. Garces A, Amaral MH, Sousa Lobo JM, Silva AC (2018) Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci 112:159–167

    Article  Google Scholar 

  43. Kim MH, Jeon YE, Kang S, Lee JY, Lee KW, Kim KT, Kim DD (2020) Lipid nanoparticles for enhancing the physicochemical stability and topical skin delivery of orobol. Pharmaceutics 12(9):845

    Article  Google Scholar 

  44. Nayeri Rad A, Shams G, Safdarian M, Khorsandi L, Grillari J, Sharif Makhmalzadeh B (2020) Metformin loaded cholesterol-lysine conjugate nanoparticles: a novel approach for protecting HDFs against UVB-induced senescence. Int J Pharm 586:119603

    Article  Google Scholar 

  45. Amer RI, Ezzat SM, Aborehab NM, Ragab MF, Mohamed D, Hashad A, Attia D, Salama MM, El Bishbishy MH (2021) Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed Pharmacother 138:111537

    Article  Google Scholar 

  46. Martin P (1997) Wound healing – aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  Google Scholar 

  47. Heng MCY (2011) Wound healing in adult skin: aiming for perfect regeneration. Int J Dermatol 50(9):1058–1066

    Article  Google Scholar 

  48. Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  Google Scholar 

  49. Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing – a review. J Mater Chem B 1(36):4531–4541

    Article  Google Scholar 

  50. Dalby MJ, Gadegaard N, Oreffo ROC (2014) Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat Mater 13(6):558–569

    Article  Google Scholar 

  51. Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31(6):1299–1306

    Article  Google Scholar 

  52. Jeon H, Koo S, Reese WM, Loskill P, Grigoropoulos CP, Healy KE (2015) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat Mater 14(9):918–923

    Article  Google Scholar 

  53. Xue J, Wu T, Xia Y (2018) Perspective: aligned arrays of electrospun nanofibers for directing cell migration. APL Mater 6(12):120902

    Article  Google Scholar 

  54. Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RHW, Han L, Fan R, Krebsbach PH, Fu J (2012) Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6(5):4094–4103

    Article  Google Scholar 

  55. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  Google Scholar 

  56. Wang P-Y, Bennetsen DT, Foss M, Ameringer T, Thissen H, Kingshott P (2015) Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. ACS Appl Mater Interfaces 7(8):4979–4989

    Article  Google Scholar 

  57. Cutiongco MFA, Jensen BS, Reynolds PM, Gadegaard N (2020) Predicting gene expression using morphological cell responses to nanotopography. Nat Commun 11(1):1384

    Article  Google Scholar 

  58. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo ROC, Dalby MJ (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10(8):637–644

    Article  Google Scholar 

  59. Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3(8):511–529

    Article  Google Scholar 

  60. Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14(6):772–792

    Article  Google Scholar 

  61. Ong CT, Zhang Y, Lim R, Samsonraj R, Masilamani J, Phan THH, Ramakrishna S, Lim I, Kee I, Fahamy M (2015) Preclinical evaluation of Tegaderm™ supported nanofibrous wound matrix dressing on porcine wound healing model. Adv Wound Care 4(2):110–118

    Article  Google Scholar 

  62. Leong WS, Wu SC, Ng K, Tan LP (2016) Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblast infiltration. Int J Bioprint 2(1):2

    Google Scholar 

  63. Xie J, Ma B, Michael PL (2012) Fabrication of novel 3D nanofiber scaffolds with anisotropic property and regular pores and their potential applications. Adv Healthc Mater 1(5):674–678

    Article  Google Scholar 

  64. Osman OS, Selway JL, Harikumar PE, Stocker CJ, Wargent ET, Cawthorne MA, Jassim S, Langlands K (2013) A novel method to assess collagen architecture in skin. BMC Bioinform 14(1):260

    Article  Google Scholar 

  65. Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J (2015) Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Biomater Sci Eng 1(10):991–1001

    Article  Google Scholar 

  66. Jiang J, Li Z, Wang H, Wang Y, Carlson MA, Teusink MJ, MacEwan MR, Gu L, Xie J (2016) Expanded 3D nanofiber scaffolds: cell penetration, neovascularization, and host response, advanced healthcare materials. Adv Healthc Mater 5(23):2993–3003

    Google Scholar 

  67. Boda SK, Chen S, Chu K, Kim HJ, Xie J (2018) Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery. ACS Appl Mater Interfaces 10(30):25069–25079

    Article  Google Scholar 

  68. John JV, Choksi M, Chen S, Boda SK, Su Y, McCarthy A, Teusink MJ, Reinhardt RA, Xie J (2019) Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. Nanomedicine 22:102081

    Article  Google Scholar 

  69. John JV, McCarthy A, Wang H, Chen S, Su Y, Davis E, Li X, Park JS, Reinhardt RA, Xie J (2020) Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble–mediated coaxial electrospray. Small 16(19):1907393

    Article  Google Scholar 

  70. Chen DW, Liao J-Y, Liu S-J, Chan E-C (2012) Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int J Nanomed 7:763–771

    Google Scholar 

  71. Silva SY, Rueda LC, Márquez GA, López M, Smith DJ, Calderón CA, Castillo JC, Matute J, Rueda-Clausen CF, Orduz A (2007) Double blind, randomized, placebo controlled clinical trial for the treatment of diabetic foot ulcers, using a nitric oxide releasing patch: PATHON. Trials 8(1):26

    Article  Google Scholar 

  72. Wu J, Li Y, He C, Kang J, Ye J, Xiao Z, Zhu J, Chen A, Feng S, Li X (2016) Novel H2S releasing nanofibrous coating for in vivo dermal wound regeneration. ACS Appl Mater Interfaces 8(41):27474–27481

    Article  Google Scholar 

  73. Gu BK, Park SJ, Kim MS, Kang CM, Kim J-I, Kim C-H (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97(1):65–73

    Article  Google Scholar 

  74. Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216

    Article  Google Scholar 

  75. Celebioglu A, Umu OCO, Tekinay T, Uyar T (2014) Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf B Biointerfaces 116:612–619

    Article  Google Scholar 

  76. Ouerghemmi S, Degoutin S, Tabary N, Cazaux F, Maton M, Gaucher V, Janus L, Neut C, Chai F, Blanchemain N (2016) Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. Int J Pharm 513(1):483–495

    Article  Google Scholar 

  77. Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T (2012) Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm 427(2):379–384

    Article  Google Scholar 

  78. Heo DN, Yang DH, Lee JB, Bae MS, Kim JH, Moon SH, Chun HJ, Kim CH, Lim H-N, Kwon IK (2013) Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol 9(3):511–515

    Article  Google Scholar 

  79. Rujitanaroj P-O, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732

    Article  Google Scholar 

  80. Chen J-P, Chiang Y (2010) Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J Nanosci Nanotechnol 10(11):7560–7564

    Article  Google Scholar 

  81. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56

    Article  Google Scholar 

  82. Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater 18:196–205

    Article  Google Scholar 

  83. Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha Y-S, Jung C-H, El-Newehy M, Kim HY (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90(4):1786–1793

    Article  Google Scholar 

  84. Jannesari M, Varshosaz J, Morshed M, Zamani M (2011) Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomed 6:993–1003

    Google Scholar 

  85. Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 469(1):102–110

    Article  Google Scholar 

  86. Liu X, Lin T, Gao Y, Xu Z, Huang C, Yao G, Jiang L, Tang Y, Wang X (2012) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res B Appl Biomater 100(6):1556–1565

    Article  Google Scholar 

  87. Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364(1):87–93

    Article  Google Scholar 

  88. Heunis TDJ, Smith C, Dicks LMT (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57(8):3928–3935

    Article  Google Scholar 

  89. Hajiali H, Summa M, Russo D, Armirotti A, Brunetti V, Bertorelli R, Athanassiou A, Mele E (2016) Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B 4(9):1686–1695

    Article  Google Scholar 

  90. Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R (2011) Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254

    Article  Google Scholar 

  91. Rodríguez-Tobías H, Morales G, Ledezma A, Romero J, Grande D (2014) Novel antibacterial electrospun mats based on poly (d,l-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci 49(24):8373–8385

    Article  Google Scholar 

  92. Sarhan WA, Azzazy HME (2015) High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects. Carbohydr Polym 122:135–143

    Article  Google Scholar 

  93. Sadri M, Arab-Sorkhi S, Vatani H, Bagheri-Pebdeni A (2015) New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers Polym 16(8):1742–1750

    Article  Google Scholar 

  94. Sebe I, Ostorhazi E, Fekete A, Kovacs KN, Zelko R, Kovalszky I, Li W, Wade JD, Szabo D, Otvos L Jr (2016) Polyvinyl alcohol nanofiber formulation of the designer antimicrobial peptide APO sterilizes Acinetobacter baumannii-infected skin wounds in mice. Amino Acids 48(1):203–211

    Article  Google Scholar 

  95. Gatti JW, Smithgall MC, Paranjape SM, Rolfes RJ, Paranjape M (2013) Using electrospun poly (ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed Microdevices 15(5):887–893

    Article  Google Scholar 

  96. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155

    Article  Google Scholar 

  97. Heunis TDJ, Botes M, Dicks LMT (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2(1):46–51

    Article  Google Scholar 

  98. Heunis T, Bshena O, Klumperman B, Dicks L (2011) Release of bacteriocins from nanofibers prepared with combinations of poly (D,L-lactide) (PDLLA) and poly (ethylene oxide) (PEO). Int J Mol Sci 12(4):2158–2173

    Article  Google Scholar 

  99. Yosefifard M, Hassanpour-Ezatti M (2014) Epidural administration of neostigmine-loaded nanofibers provides extended analgesia in rats. Daru 22(1):73

    Article  Google Scholar 

  100. Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS (2009) Curcumin-loaded poly (ε-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol 36(12):1149–1156

    Article  Google Scholar 

  101. Jung S-M, Min SK, Lee HC, Kwon YS, Jung MH, Shin HS (2016) Spirulina-PCL nanofiber wound dressing to improve cutaneous wound healing by enhancing Antioxidative mechanism. J Nanomater 2016:24

    Google Scholar 

  102. Romano I, Summa M, Heredia-Guerrero JA, Spanò R, Ceseracciu L, Pignatelli C, Bertorelli R, Mele E, Athanassiou A (2016) Fumarate-loaded electrospun nanofibers with anti-inflammatory activity for fast recovery of mild skin burns. Biomed Mater 11(4):041001

    Article  Google Scholar 

  103. Xie Z, Paras CB, Weng H, Punnakitikashem P, Su L-C, Vu K, Tang L, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9(12):9351–9359

    Article  Google Scholar 

  104. Li B, Davidson JM, Guelcher SA (2009) The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 30(20):3486–3494

    Article  Google Scholar 

  105. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29(5):587–596

    Article  Google Scholar 

  106. Jin G, Prabhakaran MP, Kai D, Ramakrishna S (2013) Controlled release of multiple epidermal induction factors through core–shell nanofibers for skin regeneration. Eur J Pharm Biopharm 85(3):689–698

    Article  Google Scholar 

  107. Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, Li X (2011) Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 32(18):4243–4254

    Article  Google Scholar 

  108. Yang Y, Xia T, Chen F, Wei W, Liu C, He S, Li X (2011) Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 9(1):48–58

    Article  Google Scholar 

  109. Coneski PN, Nash JA, Schoenfisch MH (2011) Nitric oxide-releasing electrospun polymer microfibers. ACS Appl Mater Interfaces 3(2):426–432

    Article  Google Scholar 

  110. Kim HS, Yoo HS (2013) In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater 9(7):7371–7380

    Article  Google Scholar 

  111. Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell ALM, Kyriakides TR, Saltzman WM (2013) An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials 34(15):3891–3901

    Article  Google Scholar 

  112. Kim HS, Yoo HS (2013) Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther 20(4):378–385

    Article  Google Scholar 

  113. Duan H, Feng B, Guo X, Wang J, Zhao L, Zhou G, Liu W, Cao Y, Zhang WJ (2013) Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int J Nanomed 8:2077–2084

    Google Scholar 

  114. Sheikh FA, Ju HW, Lee JM, Moon BM, Park HJ, Lee OJ, Kim J-H, Kim D-K, Park CH (2015) 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine 11(3):681–691

    Article  Google Scholar 

  115. Ma K, Liao S, He L, Lu J, Ramakrishna S, Chan CK (2011) Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng A 17(9–10):1413–1424

    Article  Google Scholar 

  116. Jin G, Prabhakaran MP, Ramakrishna S (2011) Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater 7(8):3113–3122

    Article  Google Scholar 

  117. Bayati V, Abbaspour MR, Dehbashi FN, Neisi N, Hashemitabar M (2016) A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: an in vitro and in vivo study. Anat Sci Int 92:1–12

    Google Scholar 

  118. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874–880

    Article  Google Scholar 

  119. Simman R, Phavixay L (2011) Split-thickness skin grafts remain the gold standard for the closure of large acute and chronic wounds. J Am Coll Certif Wound Spec 3(3):55–59

    Google Scholar 

  120. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258

    Article  Google Scholar 

  121. Medina A, Riegel T, Nystad D, Tredget EE (2016) Modified Meek micrografting technique for wound coverage in extensive burn injuries. J Burn Care Res 37(5):305–313

    Article  Google Scholar 

  122. Ma B, Xie J, Jiang J, Wu J (2014) Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. Biomaterials 35(2):630–641

    Article  Google Scholar 

  123. Caputo WJ, Fahoury GJ (2016) Could micro-autografts have potential in healing diabetic foot ulcers? Podiatry Today 29(3)

    Google Scholar 

  124. Sharma K, Bullock A, Ralston D, MacNeil S (2014) Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute. Burns 40(5):957–965

    Article  Google Scholar 

  125. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  126. Jenjob R, Phakkeeree T, Seidi F, Theerasilp M, Crespy D (2019) Emulsion techniques for the production of pharmacological nanoparticles. Macromol Biosci 19(6):e1900063

    Article  Google Scholar 

  127. Maatouk B, Jaffa MA, Karam M, Fahs D, Nour-Eldine W, Hasan A, Jaffa AA, Mhanna R (2021) Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications. Colloids Surf B Biointerfaces 208:112105

    Article  Google Scholar 

  128. Cheng R, Liu L, Xiang Y, Lu Y, Deng L, Zhang H, Santos HA, Cui W (2020) Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials 232:119706

    Article  Google Scholar 

  129. Bangham AD (1993) Liposomes: the Babraham connection. Chem Phys Lipids 64(1):275–285

    Article  Google Scholar 

  130. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA (2008) Emerging nanopharmaceuticals. Nanomedicine 4(4):273–282

    Article  Google Scholar 

  131. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  Google Scholar 

  132. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  Google Scholar 

  133. Xu HL, Chen PP, ZhuGe DL, Zhu QY, Jin BH, Shen BX, Xiao J, Zhao YZ (2017) Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Adv Healthc Mater 6(19):344

    Google Scholar 

  134. Chhibber S, Kaur J, Kaur S (2018) Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol 9:561

    Article  Google Scholar 

  135. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920

    Article  Google Scholar 

  136. Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    Article  Google Scholar 

  137. Golchin A, Hosseinzadeh S, Ardeshirylajimi A (2018) The exosomes released from different cell types and their effects in wound healing. J Cell Biochem 119(7):5043–5052

    Article  Google Scholar 

  138. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Moller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031

    Article  Google Scholar 

  139. Rilla K, Mustonen AM, Arasu UT, Harkonen K, Matilainen J, Nieminen P (2019) Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 75-76:201–219

    Article  Google Scholar 

  140. Liu HY, Kumar R, Zhong C, Gorji S, Paniushkina L, Masood R, Wittel UA, Fuchs H, Nazarenko I, Hirtz M (2021) Rapid capture of cancer extracellular vesicles by lipid patch microarrays. Adv Mater 33:e2008493

    Article  Google Scholar 

  141. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804

    Article  Google Scholar 

  142. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, Jin Y, Yuan L, Li B (2019) MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int 2019:7132708

    Google Scholar 

  143. Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, Liu J, Shi J, Su L, Hu D (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol 48(2):121–132

    Article  Google Scholar 

  144. Jiang L, Zhang Y, Liu T, Wang X, Wang H, Song H, Wang W (2020) Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie 177:40–49

    Article  Google Scholar 

  145. Sjoqvist S, Ishikawa T, Shimura D, Kasai Y, Imafuku A, Bou-Ghannam S, Iwata T, Kanai N (2019) Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J Extracell Vesicles 8(1):1565264

    Article  Google Scholar 

  146. Hu Y, Wu B, Xiong Y, Tao R, Panayi AC, Chen L, Tian W, Xue H, Shi L, Zhang X, Xiong L, Mi B, Liu G (2021) Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing. Chem Eng J 426:130634

    Article  Google Scholar 

  147. Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, Xu H, Lei B, Mao C (2019) Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics 9(1):65–76

    Article  Google Scholar 

  148. Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, Yan C, Xie X, Lin Z, Panayi AC, Mi B, Liu G (2021) Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnol 19(1):150

    Article  Google Scholar 

  149. Teixeira MO, Antunes JC, Felgueiras HP (2021) Recent advances in fiber-hydrogel composites for wound healing and drug delivery systems. Antibiotics 10(3):248

    Article  Google Scholar 

  150. Zandi N, Dolatyar B, Lotfi R, Shallageh Y, Shokrgozar MA, Tamjid E, Annabi N, Simchi A (2021) Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomater 124:191–204

    Article  Google Scholar 

  151. Xuan H, Wu S, Fei S, Li B, Yang Y, Yuan H (2021) Injectable nanofiber-polysaccharide self-healing hydrogels for wound healing. Mater Sci Eng C Mater Biol Appl 128:112264

    Article  Google Scholar 

  152. Saiding Q, Jin J, Qin M, Cai Z, Lu M, Wang F, Cui W, Chen X (2020) Heat-shrinkable electrospun fibrous tape for restoring structure and function of loose soft tissue. Adv Funct Mater 31(8):2007440

    Article  Google Scholar 

  153. Zhang X, Cheng G, Xing X, Liu J, Cheng Y, Ye T, Wang Q, Xiao X, Li Z, Deng H (2019) Near-infrared light-triggered porous AuPd alloy nanoparticles to produce mild localized heat to accelerate bone regeneration. J Phys Chem Lett 10(15):4185–4191

    Article  Google Scholar 

  154. Ma T, Sheng S, Dong X, Zhang Y, Li X, Zhu D, Lv F (2020) A photo-triggered hydrogel for bidirectional regulation with imaging visualization. Soft Matter 16(32):7598–7605

    Article  Google Scholar 

  155. Zhang X, Tan B, Wu Y, Zhang M, Liao J (2021) A review on hydrogels with photothermal effect in wound healing and bone tissue engineering. Polymers 13(13):2100

    Article  Google Scholar 

  156. Jin L, Guo X, Gao D, Wu C, Hu B, Tan G, Du N, Cai X, Yang Z, Zhang X (2021) NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater 13(1):24

    Article  Google Scholar 

  157. Luo R, Dai J, Zhang J, Li Z (2021) Accelerated skin wound healing by electrical stimulation. Adv Healthc Mater 10(16):e2100557

    Article  Google Scholar 

  158. Korupalli C, Li H, Nguyen N, Mi FL, Chang Y, Lin YJ, Sung HW (2021) Conductive materials for healing wounds: their incorporation in electroactive wound dressings, characterization, and perspectives. Adv Healthc Mater 10(6):e2001384

    Article  Google Scholar 

  159. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47

    Article  Google Scholar 

  160. He J, Liang Y, Shi M, Guo B (2020) Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem Eng J 385:123464

    Article  Google Scholar 

  161. Li M, Chen J, Shi M, Zhang H, Ma PX, Guo B (2019) Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem Eng J 375:121999

    Article  Google Scholar 

  162. Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25(13):2477–2488

    Article  Google Scholar 

  163. Jia Z, Gong J, Zeng Y, Ran J, Liu J, Wang K, Xie C, Lu X, Wang J (2021) Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv Funct Mater 31(19):2010461

    Article  Google Scholar 

  164. He J, Shi M, Liang Y, Guo B (2020) Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem Eng J 394:124888

    Article  Google Scholar 

  165. Shang W, Chen G, Li Y, Zhuo Y, Wang Y, Fang Z, Yu Y, Ren H (2019) Static magnetic field accelerates diabetic wound healing by facilitating resolution of inflammation. J Diabetes Res 2019:5641271

    Article  Google Scholar 

  166. Lyu W, Ma Y, Chen S, Li H, Wang P, Chen Y, Feng X (2021) Flexible ultrasonic patch for accelerating chronic wound healing. Adv Healthc Mater 10:2100785

    Article  Google Scholar 

  167. Mahjour SB, Fu X, Yang X, Fong J, Sefat F, Wang H (2015) Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns 41(8):1764–1774

    Article  Google Scholar 

  168. Yang X, Shah JD, Wang H (2009) Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng A 15(4):945–956

    Article  Google Scholar 

  169. Chen S, Carlson MA, Li X, Siddique A, Zhu W, Xie J (2021) Minimally invasive delivery of 3D shape recoverable constructs with ordered structures for tissue repair. ACS Biomater Sci Eng 7(6):2204–2211

    Article  Google Scholar 

  170. Chen S, McCarthy A, John JV, Su Y, Xie J (2020) Converting 2D nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients regulates cell behavior. Adv Mater 32(43):2003754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Xue or Shixuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fan, R., Hao, R., McCarthy, A., Xue, J., Chen, S. (2022). Skin Involved Nanotechnology. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9374-7_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9374-7_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9374-7

  • Online ISBN: 978-981-13-9374-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Skin Involved Nanotechnology
    Published:
    04 August 2022

    DOI: https://doi.org/10.1007/978-981-13-9374-7_31-2

  2. Original

    Skin Involved Nanotechnology
    Published:
    12 July 2022

    DOI: https://doi.org/10.1007/978-981-13-9374-7_31-1