Skip to main content
Log in

Raman spectroscopy of polyhedral carbon nano-onions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Raman spectra of polyhedral carbon nano-onions (PCO), obtained by underwater arc discharge of graphite electrodes, are studied. While the general Raman spectrum of PCO is very similar to those of other carbon nanostructures, including spherical nano-onions, the fine structure of the G and 2D bands gives valuable information that allows using Raman spectroscopy for differentiating the PCO from other carbon structures. The interpretation of the features of the fine structure of the spectra is supported by evidences obtained by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \({R^2} = \frac{{\sum {{{\left( {{y_{\text{fit}}} - \bar y} \right)}^2}} }}{{\sum {{{\left( {{y_{\exp }} - \bar y} \right)}^2}} }}\) where \({y_{\text{fit}}}\) and \({y_{\exp }}\) are the values of the independent variable obtained from the fitting curve and from the experimental data, respectively, and \(\bar y\) is the mean value of the experimental values.

  2. These parameters are defined as \({\gamma_{\text{G}}} = - \frac{1}{{\omega_{\text{G}}^0}}\frac{{\partial {\omega_{\text{G}}}}}{{\partial {\varepsilon_{\text{H}}}}}\) and \({\beta_{\text{G}}} = - \frac{1}{{\omega_{\text{G}}^0}}\frac{{\partial {\omega_{\text{G}}}}}{{\partial {\varepsilon_{\text{S}}}}}\) with \({\varepsilon_{\text{H}}} = {\varepsilon_{\text{L}}} + {\varepsilon_{\text{T}}}\) and \({\varepsilon_{\text{S}}} = {\varepsilon_{\text{L}}} - {\varepsilon_{\text{T}}}\) [25].

References

  1. M. Terrones, W.K. Hsu, J.P. Hare, H.W. Kroto, W. Terrones, D.R.M. Walton, Philos. Trans. R. Soc. Lond. A 354, 2023 (1995)

    Google Scholar 

  2. T. Oku, I. Narita, A. Nishiwaki, N. Koi, K. Suganuma, R. Hatakeyama et al., Top. Appl. Phys. 100, 187 (2006)

    Article  Google Scholar 

  3. S. Iijima, J. Cryst. Growth 50, 675 (1980)

    Article  ADS  Google Scholar 

  4. D. Ugarte, Nature 395, 707 (1992)

    Article  ADS  Google Scholar 

  5. D. Ugarte, Carbon 33, 163 (1995)

    Article  Google Scholar 

  6. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of fullerenes and Carbon Nanotubes (Academy Press, London, 1995)

    Google Scholar 

  7. M. Terrones, H. Terrones, J.L. Morán-López, Curr. Sci. 81, 1011 (2001)

    Google Scholar 

  8. D.W.M. Lau, D.G. McCulloch, N.A. Marks, N.R. Madsen, A.V. Rode, Phys. Rev. B 75, 233408 (2007)

    Article  ADS  Google Scholar 

  9. F. Cataldo, Carbon 40, 157 (2002)

    Article  Google Scholar 

  10. M. Szerencsi, G. Radnoczi, Vacuum 84, 197 (2010)

    Article  Google Scholar 

  11. B. Xu, New Carbon Mater. 23, 289 (2008)

    Article  Google Scholar 

  12. W.S. Bacsa, W.A. de Heer, D. Ugarte, A. Chatelain, Chem. Phys. Lett. 211, 345 (1993)

    Article  ADS  Google Scholar 

  13. E.D. Obraztsova, M. Fujii, S. Hayashi, V.L. Kuznetsov, YuV Butenkoand, A.L. Chuvilin, Carbon 36, 821 (1998)

    Article  Google Scholar 

  14. D. Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T.W. Clyne et al., Chem. Phys. Lett. 373, 52 (2003)

    Article  ADS  Google Scholar 

  15. X. Wang, B. Xu, X. Liu, H. Jia, I. Hideki, Phys. B 357, 277 (2005)

    Article  ADS  Google Scholar 

  16. S.N. Bokova-Sirosh, A.V. Pershina, V.L. Kuznetsov, A.V. Ishchenko, S.I. Moseenkov, A.S. Orekhov et al., J. Nanoelectron. Optoelectron. 8, 106 (2013)

    Article  Google Scholar 

  17. R. Borgohain, J. Yang, J.P. Selegue, D.Y. Kim, Carbon 66, 272 (2014)

    Article  Google Scholar 

  18. K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki et al., Carbon 73, 78 (2014)

    Article  Google Scholar 

  19. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga, J. Appl. Phys. 92, 2783 (2002)

    Article  ADS  Google Scholar 

  20. J. Darias, E. Carrillo, R. Castillo, J. Arteche, L. Hernández, M. Ramos, L. Desdín, Revista Cubana de Física 28, 76 (2011)

    Google Scholar 

  21. L. Hernández Tabares, E. Carrillo-Barroso, J.G. Darias González, L.F. Desdín García, R.J. Castillo-Torres, J. Arteche-Díaz et al., Revista Cubana de Física 28, 80 (2011)

    Google Scholar 

  22. A. Jorio, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley, Berlin, 2011)

    Book  Google Scholar 

  23. A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    Article  ADS  Google Scholar 

  24. C. Ruanand, Y. Lian, Fuller. Nanotubes Carbon Nanostruct. 23, 488 (2015)

    Article  Google Scholar 

  25. T.M. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti et al., Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  26. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)

    Article  ADS  Google Scholar 

  27. P.H. Tan, S. Dimovski, Y. Gogotsi, Philos. Trans. R. Soc. Lond. A 362, 2289 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Angela Fasanelli of UNICAL, and Eng. Francisco Rodríguez Melgarejo of CINVESTAV-Querétaro, for their helpful assistance in Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olimpia Arias de Fuentes or Lorenzo S. Caputi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codorniu Pujals, D., Arias de Fuentes, O., Desdín García, L.F. et al. Raman spectroscopy of polyhedral carbon nano-onions. Appl. Phys. A 120, 1339–1345 (2015). https://doi.org/10.1007/s00339-015-9315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9315-9

Keywords

Navigation