Skip to main content
Log in

Synthesis of gold nanoparticle colloids by highly intense laser irradiation of aqueous solution by flow system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly intense femtosecond laser irradiation of a metallic ion solution is a potential technique to produce nanoparticles of noble metals and their alloys without any reducing agents. In addition, all-proportional solid-solution alloy nanoparticles of noble metals even with immiscible nature in a multimetallic system can be easily formed in the mixed ion solution. The method has many advantages compared to conventional chemical and/or physical methods with regard to not only the simplicity of the method itself but also the purity and the controllability of alloy composition of fabricated nanoparticles. However, the productivity of a stationary production system has been limited by the volume of a glass cuvette containing ion solution. In the present study, larger-scale production by applying a flow system of ion solution was demonstrated for improving the productivity. The influence of irradiation time and repetition rate of the femtosecond laser, and flow rate of the solution on the efficiency of nanoparticles formation was studied. The flow system showed similar results with the stationary system with respect to the mechanism for the nanoparticles formation. In addition, the pulse repetition rate was effective to increase the productivity by more than 200 % compared to the stationary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Roduner, Chem. Soc. Rev. 35, 583 (2006)

    Article  Google Scholar 

  2. S. Link, M.A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003)

    Article  ADS  Google Scholar 

  3. A. Takami, H. Yamada, K. Nakano, S. Koda, Jpn. J. Appl. Phys. 35, L781 (1996)

    Article  ADS  Google Scholar 

  4. E. Katz, I. Willner, Angew. Chem. Int. Ed. 43, 6042 (2004)

    Article  Google Scholar 

  5. S. Barcikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15, 3022 (2013)

    Article  Google Scholar 

  6. J. Nedderson, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47, 1959 (1993)

    Article  ADS  Google Scholar 

  7. M.S. Sibbald, G. Chumanov, T.M. Cotton, J. Phys. Chem. 100, 4672 (1996)

    Article  Google Scholar 

  8. M. Prochazka, P. Mojzes, J. Stepanek, B. Vlckova, P.Y. Turpin, Anal. Chem. 69, 5103 (1997)

    Article  Google Scholar 

  9. G. Dziko, A.B. Jarzębski, J. Nanopart. Res. 13, 2533 (2011)

    Article  Google Scholar 

  10. L.L. Lazarus, A.S.-J. Yang, S. Chu, R.L. Brutchey, N. Malmstadt, Lab Chip 10, 3377 (2010)

    Article  Google Scholar 

  11. F. Mafunè, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  12. A.V. Simakin, V.V. Voronov, G.A. Shafeev, R. Brayner, F.B.- Verduraz, Chem. Phys. Lett. 348, 182 (2001)

    Article  ADS  Google Scholar 

  13. A.V. Kabashin, M. Meunier, J. Appl. Phys. 94, 7941 (2003)

    Article  ADS  Google Scholar 

  14. B. Liu, Z. Hu, Y. Che, Y. Cheng, X. Pan, Appl. Phys. Lett. 90, 044103 (2007)

    Article  ADS  Google Scholar 

  15. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Appl. Phys. Lett. 91, 083113 (2007)

    Article  ADS  Google Scholar 

  16. T. Nakamura, Y. Mochidzuki, S. Sato, J. Mater. Res. 23, 968 (2007)

    Article  ADS  Google Scholar 

  17. T. Nakamura, H. Magara, Y. Herbani, S. Sato, Appl. Phys. A 104, 1021 (2011)

    Article  ADS  Google Scholar 

  18. Y. Herbani, T. Nakamura, S. Sato, J. Colloid Interface Sci. 375, 78 (2012)

    Article  Google Scholar 

  19. T. Nakamura, K. Takasaki, A. Ito, S. Sato, Appl. Surf. Sci. 255, 9630 (2009)

    Article  ADS  Google Scholar 

  20. Y. Herbani, T. Nakamura, S. Sato, J. Phys. Chem. C 115, 21592 (2011)

    Article  Google Scholar 

  21. T. Nakamura, Y. Herbani, S. Sato, J. Nanopart. Res. 14, 785 (2012)

    Article  Google Scholar 

  22. M.S.I. Sarker, T. Nakamura, Y. Herbani, S. Sato, Appl. Phys. A 110, 145 (2013)

    Article  ADS  Google Scholar 

  23. J.L.H. Chau, C.Y. Chen, M.C. Yang, K.L. Lin, S. Sato, T. Nakamura, C.C. Yang, C.W. Cheng, Mater. Lett. 65, 804 (2011)

    Article  Google Scholar 

  24. S.L. Chin, S. Lagacé, Appl. Opt. 35, 907 (1996)

    Article  ADS  Google Scholar 

  25. S. Pommeret, F. Gobert, M. Mostafavi, I. Lampre, J.-C. Mialocq, J. Phys. Chem. A 105, 11400 (2001)

    Article  Google Scholar 

  26. T. Nakamura, Y. Herbani, D. Ursescu, R. Banici, R.V. Dabu, S. Sato, AIP Adv. 3, 082101 (2013)

    Article  ADS  Google Scholar 

  27. J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Phys. Chem. B 108, 16864 (2004)

    Article  Google Scholar 

  28. H. Muto, K. Yamada, K. Miyajima, F. Mafune, J. Phys. Chem. C 111, 17221 (2007)

    Article  Google Scholar 

  29. A. Hahn, S. Barcikowski, B.N. Chichkov, J. Laser Micro Nanoeng. 3, 73 (2008)

    Article  Google Scholar 

  30. S. Petersen, S. Barcikowski, Adv. Funct. Mater. 19, 1167 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muttaqin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muttaqin, Nakamura, T. & Sato, S. Synthesis of gold nanoparticle colloids by highly intense laser irradiation of aqueous solution by flow system. Appl. Phys. A 120, 881–888 (2015). https://doi.org/10.1007/s00339-015-9314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9314-x

Keywords

Navigation